Metamath Proof Explorer
Description: Reflexive equality. (Contributed by RP, 24-Dec-2019) (Revised by RP, 25-Apr-2020)
|
|
Ref |
Expression |
|
Hypothesis |
frege54c.1 |
⊢ 𝐴 ∈ 𝐶 |
|
Assertion |
frege54cor1c |
⊢ [ 𝐴 / 𝑥 ] 𝑥 = 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
frege54c.1 |
⊢ 𝐴 ∈ 𝐶 |
2 |
1
|
elexi |
⊢ 𝐴 ∈ V |
3 |
2
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
4 |
|
df-sn |
⊢ { 𝐴 } = { 𝑥 ∣ 𝑥 = 𝐴 } |
5 |
3 4
|
eleqtri |
⊢ 𝐴 ∈ { 𝑥 ∣ 𝑥 = 𝐴 } |
6 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴 ↔ 𝐴 ∈ { 𝑥 ∣ 𝑥 = 𝐴 } ) |
7 |
5 6
|
mpbir |
⊢ [ 𝐴 / 𝑥 ] 𝑥 = 𝐴 |