Metamath Proof Explorer


Theorem frege54cor1c

Description: Reflexive equality. (Contributed by RP, 24-Dec-2019) (Revised by RP, 25-Apr-2020)

Ref Expression
Hypothesis frege54c.1 𝐴𝐶
Assertion frege54cor1c [ 𝐴 / 𝑥 ] 𝑥 = 𝐴

Proof

Step Hyp Ref Expression
1 frege54c.1 𝐴𝐶
2 1 elexi 𝐴 ∈ V
3 2 snid 𝐴 ∈ { 𝐴 }
4 df-sn { 𝐴 } = { 𝑥𝑥 = 𝐴 }
5 3 4 eleqtri 𝐴 ∈ { 𝑥𝑥 = 𝐴 }
6 df-sbc ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴𝐴 ∈ { 𝑥𝑥 = 𝐴 } )
7 5 6 mpbir [ 𝐴 / 𝑥 ] 𝑥 = 𝐴