Metamath Proof Explorer


Theorem frege54cor1c

Description: Reflexive equality. (Contributed by RP, 24-Dec-2019) (Revised by RP, 25-Apr-2020)

Ref Expression
Hypothesis frege54c.1
|- A e. C
Assertion frege54cor1c
|- [. A / x ]. x = A

Proof

Step Hyp Ref Expression
1 frege54c.1
 |-  A e. C
2 1 elexi
 |-  A e. _V
3 2 snid
 |-  A e. { A }
4 df-sn
 |-  { A } = { x | x = A }
5 3 4 eleqtri
 |-  A e. { x | x = A }
6 df-sbc
 |-  ( [. A / x ]. x = A <-> A e. { x | x = A } )
7 5 6 mpbir
 |-  [. A / x ]. x = A