Metamath Proof Explorer


Theorem frege93

Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x
|- X e. U
frege91.y
|- Y e. V
frege91.r
|- R e. W
Assertion frege93
|- ( A. f ( A. z ( X R z -> z e. f ) -> ( R hereditary f -> Y e. f ) ) -> X ( t+ ` R ) Y )

Proof

Step Hyp Ref Expression
1 frege91.x
 |-  X e. U
2 frege91.y
 |-  Y e. V
3 frege91.r
 |-  R e. W
4 vex
 |-  f e. _V
5 4 frege60c
 |-  ( A. f ( A. z ( X R z -> z e. f ) -> ( R hereditary f -> Y e. f ) ) -> ( [. f / f ]. R hereditary f -> ( [. f / f ]. A. z ( X R z -> z e. f ) -> [. f / f ]. Y e. f ) ) )
6 sbcid
 |-  ( [. f / f ]. R hereditary f <-> R hereditary f )
7 sbcid
 |-  ( [. f / f ]. A. z ( X R z -> z e. f ) <-> A. z ( X R z -> z e. f ) )
8 sbcid
 |-  ( [. f / f ]. Y e. f <-> Y e. f )
9 7 8 imbi12i
 |-  ( ( [. f / f ]. A. z ( X R z -> z e. f ) -> [. f / f ]. Y e. f ) <-> ( A. z ( X R z -> z e. f ) -> Y e. f ) )
10 5 6 9 3imtr3g
 |-  ( A. f ( A. z ( X R z -> z e. f ) -> ( R hereditary f -> Y e. f ) ) -> ( R hereditary f -> ( A. z ( X R z -> z e. f ) -> Y e. f ) ) )
11 10 axc4i
 |-  ( A. f ( A. z ( X R z -> z e. f ) -> ( R hereditary f -> Y e. f ) ) -> A. f ( R hereditary f -> ( A. z ( X R z -> z e. f ) -> Y e. f ) ) )
12 1 2 3 frege90
 |-  ( ( A. f ( A. z ( X R z -> z e. f ) -> ( R hereditary f -> Y e. f ) ) -> A. f ( R hereditary f -> ( A. z ( X R z -> z e. f ) -> Y e. f ) ) ) -> ( A. f ( A. z ( X R z -> z e. f ) -> ( R hereditary f -> Y e. f ) ) -> X ( t+ ` R ) Y ) )
13 11 12 ax-mp
 |-  ( A. f ( A. z ( X R z -> z e. f ) -> ( R hereditary f -> Y e. f ) ) -> X ( t+ ` R ) Y )