Metamath Proof Explorer


Theorem frege93

Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x X U
frege91.y Y V
frege91.r R W
Assertion frege93 f z X R z z f R hereditary f Y f X t+ R Y

Proof

Step Hyp Ref Expression
1 frege91.x X U
2 frege91.y Y V
3 frege91.r R W
4 vex f V
5 4 frege60c f z X R z z f R hereditary f Y f [˙f / f]˙ R hereditary f [˙f / f]˙ z X R z z f [˙f / f]˙ Y f
6 sbcid [˙f / f]˙ R hereditary f R hereditary f
7 sbcid [˙f / f]˙ z X R z z f z X R z z f
8 sbcid [˙f / f]˙ Y f Y f
9 7 8 imbi12i [˙f / f]˙ z X R z z f [˙f / f]˙ Y f z X R z z f Y f
10 5 6 9 3imtr3g f z X R z z f R hereditary f Y f R hereditary f z X R z z f Y f
11 10 axc4i f z X R z z f R hereditary f Y f f R hereditary f z X R z z f Y f
12 1 2 3 frege90 f z X R z z f R hereditary f Y f f R hereditary f z X R z z f Y f f z X R z z f R hereditary f Y f X t+ R Y
13 11 12 ax-mp f z X R z z f R hereditary f Y f X t+ R Y