| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege91.x |
⊢ 𝑋 ∈ 𝑈 |
| 2 |
|
frege91.y |
⊢ 𝑌 ∈ 𝑉 |
| 3 |
|
frege91.r |
⊢ 𝑅 ∈ 𝑊 |
| 4 |
|
vex |
⊢ 𝑓 ∈ V |
| 5 |
4
|
frege60c |
⊢ ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓 ) ) → ( [ 𝑓 / 𝑓 ] 𝑅 hereditary 𝑓 → ( [ 𝑓 / 𝑓 ] ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → [ 𝑓 / 𝑓 ] 𝑌 ∈ 𝑓 ) ) ) |
| 6 |
|
sbcid |
⊢ ( [ 𝑓 / 𝑓 ] 𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝑓 ) |
| 7 |
|
sbcid |
⊢ ( [ 𝑓 / 𝑓 ] ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) ↔ ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) ) |
| 8 |
|
sbcid |
⊢ ( [ 𝑓 / 𝑓 ] 𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓 ) |
| 9 |
7 8
|
imbi12i |
⊢ ( ( [ 𝑓 / 𝑓 ] ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → [ 𝑓 / 𝑓 ] 𝑌 ∈ 𝑓 ) ↔ ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) |
| 10 |
5 6 9
|
3imtr3g |
⊢ ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓 ) ) → ( 𝑅 hereditary 𝑓 → ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) |
| 11 |
10
|
axc4i |
⊢ ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓 ) ) → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) |
| 12 |
1 2 3
|
frege90 |
⊢ ( ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓 ) ) → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) → ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧 → 𝑧 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) |