Metamath Proof Explorer


Theorem frege93

Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion frege93 ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → ( 𝑅 hereditary 𝑓𝑌𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 )

Proof

Step Hyp Ref Expression
1 frege91.x 𝑋𝑈
2 frege91.y 𝑌𝑉
3 frege91.r 𝑅𝑊
4 vex 𝑓 ∈ V
5 4 frege60c ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → ( 𝑅 hereditary 𝑓𝑌𝑓 ) ) → ( [ 𝑓 / 𝑓 ] 𝑅 hereditary 𝑓 → ( [ 𝑓 / 𝑓 ]𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → [ 𝑓 / 𝑓 ] 𝑌𝑓 ) ) )
6 sbcid ( [ 𝑓 / 𝑓 ] 𝑅 hereditary 𝑓𝑅 hereditary 𝑓 )
7 sbcid ( [ 𝑓 / 𝑓 ]𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) ↔ ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) )
8 sbcid ( [ 𝑓 / 𝑓 ] 𝑌𝑓𝑌𝑓 )
9 7 8 imbi12i ( ( [ 𝑓 / 𝑓 ]𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → [ 𝑓 / 𝑓 ] 𝑌𝑓 ) ↔ ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → 𝑌𝑓 ) )
10 5 6 9 3imtr3g ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → ( 𝑅 hereditary 𝑓𝑌𝑓 ) ) → ( 𝑅 hereditary 𝑓 → ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → 𝑌𝑓 ) ) )
11 10 axc4i ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → ( 𝑅 hereditary 𝑓𝑌𝑓 ) ) → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → 𝑌𝑓 ) ) )
12 1 2 3 frege90 ( ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → ( 𝑅 hereditary 𝑓𝑌𝑓 ) ) → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → 𝑌𝑓 ) ) ) → ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → ( 𝑅 hereditary 𝑓𝑌𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) )
13 11 12 ax-mp ( ∀ 𝑓 ( ∀ 𝑧 ( 𝑋 𝑅 𝑧𝑧𝑓 ) → ( 𝑅 hereditary 𝑓𝑌𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 )