Metamath Proof Explorer


Theorem frege90

Description: Add antecedent to frege89 . Proposition 90 of Frege1879 p. 68. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege90.x 𝑋𝑈
frege90.y 𝑌𝑉
frege90.r 𝑅𝑊
Assertion frege90 ( ( 𝜑 → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → 𝑌𝑓 ) ) ) → ( 𝜑𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 frege90.x 𝑋𝑈
2 frege90.y 𝑌𝑉
3 frege90.r 𝑅𝑊
4 1 2 3 frege89 ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → 𝑌𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 )
5 frege5 ( ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → 𝑌𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) → ( ( 𝜑 → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → 𝑌𝑓 ) ) ) → ( 𝜑𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) ) )
6 4 5 ax-mp ( ( 𝜑 → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → 𝑌𝑓 ) ) ) → ( 𝜑𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) )