Description: One direction of dffrege76 . Proposition 89 of Frege1879 p. 68. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege89.x | ⊢ 𝑋 ∈ 𝑈 | |
| frege89.y | ⊢ 𝑌 ∈ 𝑉 | ||
| frege89.r | ⊢ 𝑅 ∈ 𝑊 | ||
| Assertion | frege89 | ⊢ ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege89.x | ⊢ 𝑋 ∈ 𝑈 | |
| 2 | frege89.y | ⊢ 𝑌 ∈ 𝑉 | |
| 3 | frege89.r | ⊢ 𝑅 ∈ 𝑊 | |
| 4 | 1 2 3 | dffrege76 | ⊢ ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) |
| 5 | frege52aid | ⊢ ( ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) → ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) |