Metamath Proof Explorer


Theorem frege89

Description: One direction of dffrege76 . Proposition 89 of Frege1879 p. 68. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege89.x XU
frege89.y YV
frege89.r RW
Assertion frege89 fRhereditaryfwXRwwfYfXt+RY

Proof

Step Hyp Ref Expression
1 frege89.x XU
2 frege89.y YV
3 frege89.r RW
4 1 2 3 dffrege76 fRhereditaryfwXRwwfYfXt+RY
5 frege52aid fRhereditaryfwXRwwfYfXt+RYfRhereditaryfwXRwwfYfXt+RY
6 4 5 ax-mp fRhereditaryfwXRwwfYfXt+RY