Description: One direction of dffrege76 . Proposition 89 of Frege1879 p. 68. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege89.x | |- X e. U |
|
| frege89.y | |- Y e. V |
||
| frege89.r | |- R e. W |
||
| Assertion | frege89 | |- ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege89.x | |- X e. U |
|
| 2 | frege89.y | |- Y e. V |
|
| 3 | frege89.r | |- R e. W |
|
| 4 | 1 2 3 | dffrege76 | |- ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) <-> X ( t+ ` R ) Y ) |
| 5 | frege52aid | |- ( ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) <-> X ( t+ ` R ) Y ) -> ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y ) ) |
|
| 6 | 4 5 | ax-mp | |- ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y ) |