Metamath Proof Explorer


Theorem frege89

Description: One direction of dffrege76 . Proposition 89 of Frege1879 p. 68. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege89.x
|- X e. U
frege89.y
|- Y e. V
frege89.r
|- R e. W
Assertion frege89
|- ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y )

Proof

Step Hyp Ref Expression
1 frege89.x
 |-  X e. U
2 frege89.y
 |-  Y e. V
3 frege89.r
 |-  R e. W
4 1 2 3 dffrege76
 |-  ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) <-> X ( t+ ` R ) Y )
5 frege52aid
 |-  ( ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) <-> X ( t+ ` R ) Y ) -> ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y ) )
6 4 5 ax-mp
 |-  ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y )