Description: If from the two propositions that every result of an application of the procedure R to B has property f and that property f is hereditary in the R -sequence, it can be inferred, whatever f may be, that E has property f , then we say E follows B in the R -sequence. Definition 76 of Frege1879 p. 60.
Each of B , E and R must be sets. (Contributed by RP, 2-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege76.b | |- B e. U | |
| frege76.e | |- E e. V | ||
| frege76.r | |- R e. W | ||
| Assertion | dffrege76 | |- ( A. f ( R hereditary f -> ( A. a ( B R a -> a e. f ) -> E e. f ) ) <-> B ( t+ ` R ) E ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege76.b | |- B e. U | |
| 2 | frege76.e | |- E e. V | |
| 3 | frege76.r | |- R e. W | |
| 4 | brtrclfv2 |  |-  ( ( B e. U /\ E e. V /\ R e. W ) -> ( B ( t+ ` R ) E <-> E e. |^| { f | ( R " ( { B } u. f ) ) C_ f } ) ) | |
| 5 | 1 2 3 4 | mp3an |  |-  ( B ( t+ ` R ) E <-> E e. |^| { f | ( R " ( { B } u. f ) ) C_ f } ) | 
| 6 | 2 | elexi | |- E e. _V | 
| 7 | 6 | elintab |  |-  ( E e. |^| { f | ( R " ( { B } u. f ) ) C_ f } <-> A. f ( ( R " ( { B } u. f ) ) C_ f -> E e. f ) ) | 
| 8 | imaundi |  |-  ( R " ( { B } u. f ) ) = ( ( R " { B } ) u. ( R " f ) ) | |
| 9 | 8 | equncomi |  |-  ( R " ( { B } u. f ) ) = ( ( R " f ) u. ( R " { B } ) ) | 
| 10 | 9 | sseq1i |  |-  ( ( R " ( { B } u. f ) ) C_ f <-> ( ( R " f ) u. ( R " { B } ) ) C_ f ) | 
| 11 | unss |  |-  ( ( ( R " f ) C_ f /\ ( R " { B } ) C_ f ) <-> ( ( R " f ) u. ( R " { B } ) ) C_ f ) | |
| 12 | 10 11 | bitr4i |  |-  ( ( R " ( { B } u. f ) ) C_ f <-> ( ( R " f ) C_ f /\ ( R " { B } ) C_ f ) ) | 
| 13 | df-he | |- ( R hereditary f <-> ( R " f ) C_ f ) | |
| 14 | 13 | bicomi | |- ( ( R " f ) C_ f <-> R hereditary f ) | 
| 15 | df-ss |  |-  ( ( R " { B } ) C_ f <-> A. a ( a e. ( R " { B } ) -> a e. f ) ) | |
| 16 | 1 | elexi | |- B e. _V | 
| 17 | vex | |- a e. _V | |
| 18 | 16 17 | elimasn |  |-  ( a e. ( R " { B } ) <-> <. B , a >. e. R ) | 
| 19 | df-br | |- ( B R a <-> <. B , a >. e. R ) | |
| 20 | 18 19 | bitr4i |  |-  ( a e. ( R " { B } ) <-> B R a ) | 
| 21 | 20 | imbi1i |  |-  ( ( a e. ( R " { B } ) -> a e. f ) <-> ( B R a -> a e. f ) ) | 
| 22 | 21 | albii |  |-  ( A. a ( a e. ( R " { B } ) -> a e. f ) <-> A. a ( B R a -> a e. f ) ) | 
| 23 | 15 22 | bitri |  |-  ( ( R " { B } ) C_ f <-> A. a ( B R a -> a e. f ) ) | 
| 24 | 14 23 | anbi12i |  |-  ( ( ( R " f ) C_ f /\ ( R " { B } ) C_ f ) <-> ( R hereditary f /\ A. a ( B R a -> a e. f ) ) ) | 
| 25 | 12 24 | bitri |  |-  ( ( R " ( { B } u. f ) ) C_ f <-> ( R hereditary f /\ A. a ( B R a -> a e. f ) ) ) | 
| 26 | 25 | imbi1i |  |-  ( ( ( R " ( { B } u. f ) ) C_ f -> E e. f ) <-> ( ( R hereditary f /\ A. a ( B R a -> a e. f ) ) -> E e. f ) ) | 
| 27 | impexp | |- ( ( ( R hereditary f /\ A. a ( B R a -> a e. f ) ) -> E e. f ) <-> ( R hereditary f -> ( A. a ( B R a -> a e. f ) -> E e. f ) ) ) | |
| 28 | 26 27 | bitri |  |-  ( ( ( R " ( { B } u. f ) ) C_ f -> E e. f ) <-> ( R hereditary f -> ( A. a ( B R a -> a e. f ) -> E e. f ) ) ) | 
| 29 | 28 | albii |  |-  ( A. f ( ( R " ( { B } u. f ) ) C_ f -> E e. f ) <-> A. f ( R hereditary f -> ( A. a ( B R a -> a e. f ) -> E e. f ) ) ) | 
| 30 | 5 7 29 | 3bitrri | |- ( A. f ( R hereditary f -> ( A. a ( B R a -> a e. f ) -> E e. f ) ) <-> B ( t+ ` R ) E ) |