Description: If from the two propositions that every result of an application of the procedure R to B has property f and that property f is hereditary in the R -sequence, it can be inferred, whatever f may be, that E has property f , then we say E follows B in the R -sequence. Definition 76 of Frege1879 p. 60.
Each of B , E and R must be sets. (Contributed by RP, 2-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege76.b | ⊢ 𝐵 ∈ 𝑈 | |
frege76.e | ⊢ 𝐸 ∈ 𝑉 | ||
frege76.r | ⊢ 𝑅 ∈ 𝑊 | ||
Assertion | dffrege76 | ⊢ ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝐸 ∈ 𝑓 ) ) ↔ 𝐵 ( t+ ‘ 𝑅 ) 𝐸 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege76.b | ⊢ 𝐵 ∈ 𝑈 | |
2 | frege76.e | ⊢ 𝐸 ∈ 𝑉 | |
3 | frege76.r | ⊢ 𝑅 ∈ 𝑊 | |
4 | brtrclfv2 | ⊢ ( ( 𝐵 ∈ 𝑈 ∧ 𝐸 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝐵 ( t+ ‘ 𝑅 ) 𝐸 ↔ 𝐸 ∈ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) ) | |
5 | 1 2 3 4 | mp3an | ⊢ ( 𝐵 ( t+ ‘ 𝑅 ) 𝐸 ↔ 𝐸 ∈ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) |
6 | 2 | elexi | ⊢ 𝐸 ∈ V |
7 | 6 | elintab | ⊢ ( 𝐸 ∈ ∩ { 𝑓 ∣ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 } ↔ ∀ 𝑓 ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 → 𝐸 ∈ 𝑓 ) ) |
8 | imaundi | ⊢ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) = ( ( 𝑅 “ { 𝐵 } ) ∪ ( 𝑅 “ 𝑓 ) ) | |
9 | 8 | equncomi | ⊢ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) = ( ( 𝑅 “ 𝑓 ) ∪ ( 𝑅 “ { 𝐵 } ) ) |
10 | 9 | sseq1i | ⊢ ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( ( 𝑅 “ 𝑓 ) ∪ ( 𝑅 “ { 𝐵 } ) ) ⊆ 𝑓 ) |
11 | unss | ⊢ ( ( ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ∧ ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ) ↔ ( ( 𝑅 “ 𝑓 ) ∪ ( 𝑅 “ { 𝐵 } ) ) ⊆ 𝑓 ) | |
12 | 10 11 | bitr4i | ⊢ ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ∧ ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ) ) |
13 | df-he | ⊢ ( 𝑅 hereditary 𝑓 ↔ ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ) | |
14 | 13 | bicomi | ⊢ ( ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ↔ 𝑅 hereditary 𝑓 ) |
15 | dfss2 | ⊢ ( ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ↔ ∀ 𝑎 ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) → 𝑎 ∈ 𝑓 ) ) | |
16 | 1 | elexi | ⊢ 𝐵 ∈ V |
17 | vex | ⊢ 𝑎 ∈ V | |
18 | 16 17 | elimasn | ⊢ ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) ↔ 〈 𝐵 , 𝑎 〉 ∈ 𝑅 ) |
19 | df-br | ⊢ ( 𝐵 𝑅 𝑎 ↔ 〈 𝐵 , 𝑎 〉 ∈ 𝑅 ) | |
20 | 18 19 | bitr4i | ⊢ ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) ↔ 𝐵 𝑅 𝑎 ) |
21 | 20 | imbi1i | ⊢ ( ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) → 𝑎 ∈ 𝑓 ) ↔ ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) |
22 | 21 | albii | ⊢ ( ∀ 𝑎 ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) → 𝑎 ∈ 𝑓 ) ↔ ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) |
23 | 15 22 | bitri | ⊢ ( ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ↔ ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) |
24 | 14 23 | anbi12i | ⊢ ( ( ( 𝑅 “ 𝑓 ) ⊆ 𝑓 ∧ ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ) ↔ ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) ) |
25 | 12 24 | bitri | ⊢ ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) ) |
26 | 25 | imbi1i | ⊢ ( ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 → 𝐸 ∈ 𝑓 ) ↔ ( ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) → 𝐸 ∈ 𝑓 ) ) |
27 | impexp | ⊢ ( ( ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) → 𝐸 ∈ 𝑓 ) ↔ ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝐸 ∈ 𝑓 ) ) ) | |
28 | 26 27 | bitri | ⊢ ( ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 → 𝐸 ∈ 𝑓 ) ↔ ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝐸 ∈ 𝑓 ) ) ) |
29 | 28 | albii | ⊢ ( ∀ 𝑓 ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 → 𝐸 ∈ 𝑓 ) ↔ ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝐸 ∈ 𝑓 ) ) ) |
30 | 5 7 29 | 3bitrri | ⊢ ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝐸 ∈ 𝑓 ) ) ↔ 𝐵 ( t+ ‘ 𝑅 ) 𝐸 ) |