Metamath Proof Explorer


Theorem dffrege76

Description: If from the two propositions that every result of an application of the procedure R to B has property f and that property f is hereditary in the R -sequence, it can be inferred, whatever f may be, that E has property f , then we say E follows B in the R -sequence. Definition 76 of Frege1879 p. 60.

Each of B , E and R must be sets. (Contributed by RP, 2-Jul-2020)

Ref Expression
Hypotheses frege76.b 𝐵𝑈
frege76.e 𝐸𝑉
frege76.r 𝑅𝑊
Assertion dffrege76 ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) → 𝐸𝑓 ) ) ↔ 𝐵 ( t+ ‘ 𝑅 ) 𝐸 )

Proof

Step Hyp Ref Expression
1 frege76.b 𝐵𝑈
2 frege76.e 𝐸𝑉
3 frege76.r 𝑅𝑊
4 brtrclfv2 ( ( 𝐵𝑈𝐸𝑉𝑅𝑊 ) → ( 𝐵 ( t+ ‘ 𝑅 ) 𝐸𝐸 { 𝑓 ∣ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 } ) )
5 1 2 3 4 mp3an ( 𝐵 ( t+ ‘ 𝑅 ) 𝐸𝐸 { 𝑓 ∣ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 } )
6 2 elexi 𝐸 ∈ V
7 6 elintab ( 𝐸 { 𝑓 ∣ ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 } ↔ ∀ 𝑓 ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓𝐸𝑓 ) )
8 imaundi ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) = ( ( 𝑅 “ { 𝐵 } ) ∪ ( 𝑅𝑓 ) )
9 8 equncomi ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) = ( ( 𝑅𝑓 ) ∪ ( 𝑅 “ { 𝐵 } ) )
10 9 sseq1i ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( ( 𝑅𝑓 ) ∪ ( 𝑅 “ { 𝐵 } ) ) ⊆ 𝑓 )
11 unss ( ( ( 𝑅𝑓 ) ⊆ 𝑓 ∧ ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ) ↔ ( ( 𝑅𝑓 ) ∪ ( 𝑅 “ { 𝐵 } ) ) ⊆ 𝑓 )
12 10 11 bitr4i ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( ( 𝑅𝑓 ) ⊆ 𝑓 ∧ ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ) )
13 df-he ( 𝑅 hereditary 𝑓 ↔ ( 𝑅𝑓 ) ⊆ 𝑓 )
14 13 bicomi ( ( 𝑅𝑓 ) ⊆ 𝑓𝑅 hereditary 𝑓 )
15 dfss2 ( ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ↔ ∀ 𝑎 ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) → 𝑎𝑓 ) )
16 1 elexi 𝐵 ∈ V
17 vex 𝑎 ∈ V
18 16 17 elimasn ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) ↔ ⟨ 𝐵 , 𝑎 ⟩ ∈ 𝑅 )
19 df-br ( 𝐵 𝑅 𝑎 ↔ ⟨ 𝐵 , 𝑎 ⟩ ∈ 𝑅 )
20 18 19 bitr4i ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) ↔ 𝐵 𝑅 𝑎 )
21 20 imbi1i ( ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) → 𝑎𝑓 ) ↔ ( 𝐵 𝑅 𝑎𝑎𝑓 ) )
22 21 albii ( ∀ 𝑎 ( 𝑎 ∈ ( 𝑅 “ { 𝐵 } ) → 𝑎𝑓 ) ↔ ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) )
23 15 22 bitri ( ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ↔ ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) )
24 14 23 anbi12i ( ( ( 𝑅𝑓 ) ⊆ 𝑓 ∧ ( 𝑅 “ { 𝐵 } ) ⊆ 𝑓 ) ↔ ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) ) )
25 12 24 bitri ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓 ↔ ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) ) )
26 25 imbi1i ( ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓𝐸𝑓 ) ↔ ( ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) ) → 𝐸𝑓 ) )
27 impexp ( ( ( 𝑅 hereditary 𝑓 ∧ ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) ) → 𝐸𝑓 ) ↔ ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) → 𝐸𝑓 ) ) )
28 26 27 bitri ( ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓𝐸𝑓 ) ↔ ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) → 𝐸𝑓 ) ) )
29 28 albii ( ∀ 𝑓 ( ( 𝑅 “ ( { 𝐵 } ∪ 𝑓 ) ) ⊆ 𝑓𝐸𝑓 ) ↔ ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) → 𝐸𝑓 ) ) )
30 5 7 29 3bitrri ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝐵 𝑅 𝑎𝑎𝑓 ) → 𝐸𝑓 ) ) ↔ 𝐵 ( t+ ‘ 𝑅 ) 𝐸 )