Step |
Hyp |
Ref |
Expression |
1 |
|
frege77.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege77.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
|
frege77.r |
⊢ 𝑅 ∈ 𝑊 |
4 |
|
frege77.a |
⊢ 𝐴 ∈ 𝐵 |
5 |
1 2 3
|
dffrege76 |
⊢ ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) |
6 |
4
|
frege68c |
⊢ ( ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → [ 𝐴 / 𝑓 ] ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) ) |
7 |
|
sbcimg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑓 ] ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ ( [ 𝐴 / 𝑓 ] 𝑅 hereditary 𝑓 → [ 𝐴 / 𝑓 ] ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) ) |
8 |
4 7
|
ax-mp |
⊢ ( [ 𝐴 / 𝑓 ] ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ ( [ 𝐴 / 𝑓 ] 𝑅 hereditary 𝑓 → [ 𝐴 / 𝑓 ] ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) |
9 |
|
sbcheg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑓 ] 𝑅 hereditary 𝑓 ↔ ⦋ 𝐴 / 𝑓 ⦌ 𝑅 hereditary ⦋ 𝐴 / 𝑓 ⦌ 𝑓 ) ) |
10 |
4 9
|
ax-mp |
⊢ ( [ 𝐴 / 𝑓 ] 𝑅 hereditary 𝑓 ↔ ⦋ 𝐴 / 𝑓 ⦌ 𝑅 hereditary ⦋ 𝐴 / 𝑓 ⦌ 𝑓 ) |
11 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝐵 → ⦋ 𝐴 / 𝑓 ⦌ 𝑅 = 𝑅 ) |
12 |
4 11
|
ax-mp |
⊢ ⦋ 𝐴 / 𝑓 ⦌ 𝑅 = 𝑅 |
13 |
|
csbvarg |
⊢ ( 𝐴 ∈ 𝐵 → ⦋ 𝐴 / 𝑓 ⦌ 𝑓 = 𝐴 ) |
14 |
4 13
|
ax-mp |
⊢ ⦋ 𝐴 / 𝑓 ⦌ 𝑓 = 𝐴 |
15 |
|
heeq12 |
⊢ ( ( ⦋ 𝐴 / 𝑓 ⦌ 𝑅 = 𝑅 ∧ ⦋ 𝐴 / 𝑓 ⦌ 𝑓 = 𝐴 ) → ( ⦋ 𝐴 / 𝑓 ⦌ 𝑅 hereditary ⦋ 𝐴 / 𝑓 ⦌ 𝑓 ↔ 𝑅 hereditary 𝐴 ) ) |
16 |
12 14 15
|
mp2an |
⊢ ( ⦋ 𝐴 / 𝑓 ⦌ 𝑅 hereditary ⦋ 𝐴 / 𝑓 ⦌ 𝑓 ↔ 𝑅 hereditary 𝐴 ) |
17 |
10 16
|
bitri |
⊢ ( [ 𝐴 / 𝑓 ] 𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝐴 ) |
18 |
|
sbcimg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑓 ] ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ↔ ( [ 𝐴 / 𝑓 ] ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → [ 𝐴 / 𝑓 ] 𝑌 ∈ 𝑓 ) ) ) |
19 |
4 18
|
ax-mp |
⊢ ( [ 𝐴 / 𝑓 ] ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ↔ ( [ 𝐴 / 𝑓 ] ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → [ 𝐴 / 𝑓 ] 𝑌 ∈ 𝑓 ) ) |
20 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑓 ] ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ↔ ∀ 𝑎 [ 𝐴 / 𝑓 ] ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ) |
21 |
|
sbcimg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑓 ] ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ↔ ( [ 𝐴 / 𝑓 ] 𝑋 𝑅 𝑎 → [ 𝐴 / 𝑓 ] 𝑎 ∈ 𝑓 ) ) ) |
22 |
4 21
|
ax-mp |
⊢ ( [ 𝐴 / 𝑓 ] ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ↔ ( [ 𝐴 / 𝑓 ] 𝑋 𝑅 𝑎 → [ 𝐴 / 𝑓 ] 𝑎 ∈ 𝑓 ) ) |
23 |
|
sbcg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑓 ] 𝑋 𝑅 𝑎 ↔ 𝑋 𝑅 𝑎 ) ) |
24 |
4 23
|
ax-mp |
⊢ ( [ 𝐴 / 𝑓 ] 𝑋 𝑅 𝑎 ↔ 𝑋 𝑅 𝑎 ) |
25 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑓 ] 𝑎 ∈ 𝑓 ↔ 𝑎 ∈ 𝐴 ) ) |
26 |
4 25
|
ax-mp |
⊢ ( [ 𝐴 / 𝑓 ] 𝑎 ∈ 𝑓 ↔ 𝑎 ∈ 𝐴 ) |
27 |
24 26
|
imbi12i |
⊢ ( ( [ 𝐴 / 𝑓 ] 𝑋 𝑅 𝑎 → [ 𝐴 / 𝑓 ] 𝑎 ∈ 𝑓 ) ↔ ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) ) |
28 |
22 27
|
bitri |
⊢ ( [ 𝐴 / 𝑓 ] ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ↔ ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) ) |
29 |
28
|
albii |
⊢ ( ∀ 𝑎 [ 𝐴 / 𝑓 ] ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ↔ ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) ) |
30 |
20 29
|
bitri |
⊢ ( [ 𝐴 / 𝑓 ] ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) ↔ ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) ) |
31 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑓 ] 𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝐴 ) ) |
32 |
4 31
|
ax-mp |
⊢ ( [ 𝐴 / 𝑓 ] 𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝐴 ) |
33 |
30 32
|
imbi12i |
⊢ ( ( [ 𝐴 / 𝑓 ] ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → [ 𝐴 / 𝑓 ] 𝑌 ∈ 𝑓 ) ↔ ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) ) |
34 |
19 33
|
bitri |
⊢ ( [ 𝐴 / 𝑓 ] ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ↔ ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) ) |
35 |
17 34
|
imbi12i |
⊢ ( ( [ 𝐴 / 𝑓 ] 𝑅 hereditary 𝑓 → [ 𝐴 / 𝑓 ] ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ ( 𝑅 hereditary 𝐴 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) ) ) |
36 |
8 35
|
bitri |
⊢ ( [ 𝐴 / 𝑓 ] ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ ( 𝑅 hereditary 𝐴 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) ) ) |
37 |
6 36
|
syl6ib |
⊢ ( ( ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( 𝑅 hereditary 𝐴 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) ) ) ) |
38 |
5 37
|
ax-mp |
⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( 𝑅 hereditary 𝐴 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) ) ) |