Metamath Proof Explorer


Theorem frege77

Description: If Y follows X in the R -sequence, if property A is hereditary in the R -sequence, and if every result of an application of the procedure R to X has the property A , then Y has property A . Proposition 77 of Frege1879 p. 62. (Contributed by RP, 29-Jun-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege77.x X U
frege77.y Y V
frege77.r R W
frege77.a A B
Assertion frege77 X t+ R Y R hereditary A a X R a a A Y A

Proof

Step Hyp Ref Expression
1 frege77.x X U
2 frege77.y Y V
3 frege77.r R W
4 frege77.a A B
5 1 2 3 dffrege76 f R hereditary f a X R a a f Y f X t+ R Y
6 4 frege68c f R hereditary f a X R a a f Y f X t+ R Y X t+ R Y [˙A / f]˙ R hereditary f a X R a a f Y f
7 sbcimg A B [˙A / f]˙ R hereditary f a X R a a f Y f [˙A / f]˙ R hereditary f [˙A / f]˙ a X R a a f Y f
8 4 7 ax-mp [˙A / f]˙ R hereditary f a X R a a f Y f [˙A / f]˙ R hereditary f [˙A / f]˙ a X R a a f Y f
9 sbcheg A B [˙A / f]˙ R hereditary f A / f R hereditary A / f f
10 4 9 ax-mp [˙A / f]˙ R hereditary f A / f R hereditary A / f f
11 csbconstg A B A / f R = R
12 4 11 ax-mp A / f R = R
13 csbvarg A B A / f f = A
14 4 13 ax-mp A / f f = A
15 heeq12 A / f R = R A / f f = A A / f R hereditary A / f f R hereditary A
16 12 14 15 mp2an A / f R hereditary A / f f R hereditary A
17 10 16 bitri [˙A / f]˙ R hereditary f R hereditary A
18 sbcimg A B [˙A / f]˙ a X R a a f Y f [˙A / f]˙ a X R a a f [˙A / f]˙ Y f
19 4 18 ax-mp [˙A / f]˙ a X R a a f Y f [˙A / f]˙ a X R a a f [˙A / f]˙ Y f
20 sbcal [˙A / f]˙ a X R a a f a [˙A / f]˙ X R a a f
21 sbcimg A B [˙A / f]˙ X R a a f [˙A / f]˙ X R a [˙A / f]˙ a f
22 4 21 ax-mp [˙A / f]˙ X R a a f [˙A / f]˙ X R a [˙A / f]˙ a f
23 sbcg A B [˙A / f]˙ X R a X R a
24 4 23 ax-mp [˙A / f]˙ X R a X R a
25 sbcel2gv A B [˙A / f]˙ a f a A
26 4 25 ax-mp [˙A / f]˙ a f a A
27 24 26 imbi12i [˙A / f]˙ X R a [˙A / f]˙ a f X R a a A
28 22 27 bitri [˙A / f]˙ X R a a f X R a a A
29 28 albii a [˙A / f]˙ X R a a f a X R a a A
30 20 29 bitri [˙A / f]˙ a X R a a f a X R a a A
31 sbcel2gv A B [˙A / f]˙ Y f Y A
32 4 31 ax-mp [˙A / f]˙ Y f Y A
33 30 32 imbi12i [˙A / f]˙ a X R a a f [˙A / f]˙ Y f a X R a a A Y A
34 19 33 bitri [˙A / f]˙ a X R a a f Y f a X R a a A Y A
35 17 34 imbi12i [˙A / f]˙ R hereditary f [˙A / f]˙ a X R a a f Y f R hereditary A a X R a a A Y A
36 8 35 bitri [˙A / f]˙ R hereditary f a X R a a f Y f R hereditary A a X R a a A Y A
37 6 36 syl6ib f R hereditary f a X R a a f Y f X t+ R Y X t+ R Y R hereditary A a X R a a A Y A
38 5 37 ax-mp X t+ R Y R hereditary A a X R a a A Y A