Metamath Proof Explorer


Theorem frege77

Description: If Y follows X in the R -sequence, if property A is hereditary in the R -sequence, and if every result of an application of the procedure R to X has the property A , then Y has property A . Proposition 77 of Frege1879 p. 62. (Contributed by RP, 29-Jun-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege77.x XU
frege77.y YV
frege77.r RW
frege77.a AB
Assertion frege77 Xt+RYRhereditaryAaXRaaAYA

Proof

Step Hyp Ref Expression
1 frege77.x XU
2 frege77.y YV
3 frege77.r RW
4 frege77.a AB
5 1 2 3 dffrege76 fRhereditaryfaXRaafYfXt+RY
6 4 frege68c fRhereditaryfaXRaafYfXt+RYXt+RY[˙A/f]˙RhereditaryfaXRaafYf
7 sbcimg AB[˙A/f]˙RhereditaryfaXRaafYf[˙A/f]˙Rhereditaryf[˙A/f]˙aXRaafYf
8 4 7 ax-mp [˙A/f]˙RhereditaryfaXRaafYf[˙A/f]˙Rhereditaryf[˙A/f]˙aXRaafYf
9 sbcheg AB[˙A/f]˙RhereditaryfA/fRhereditaryA/ff
10 4 9 ax-mp [˙A/f]˙RhereditaryfA/fRhereditaryA/ff
11 csbconstg ABA/fR=R
12 4 11 ax-mp A/fR=R
13 csbvarg ABA/ff=A
14 4 13 ax-mp A/ff=A
15 heeq12 A/fR=RA/ff=AA/fRhereditaryA/ffRhereditaryA
16 12 14 15 mp2an A/fRhereditaryA/ffRhereditaryA
17 10 16 bitri [˙A/f]˙RhereditaryfRhereditaryA
18 sbcimg AB[˙A/f]˙aXRaafYf[˙A/f]˙aXRaaf[˙A/f]˙Yf
19 4 18 ax-mp [˙A/f]˙aXRaafYf[˙A/f]˙aXRaaf[˙A/f]˙Yf
20 sbcal [˙A/f]˙aXRaafa[˙A/f]˙XRaaf
21 sbcimg AB[˙A/f]˙XRaaf[˙A/f]˙XRa[˙A/f]˙af
22 4 21 ax-mp [˙A/f]˙XRaaf[˙A/f]˙XRa[˙A/f]˙af
23 sbcg AB[˙A/f]˙XRaXRa
24 4 23 ax-mp [˙A/f]˙XRaXRa
25 sbcel2gv AB[˙A/f]˙afaA
26 4 25 ax-mp [˙A/f]˙afaA
27 24 26 imbi12i [˙A/f]˙XRa[˙A/f]˙afXRaaA
28 22 27 bitri [˙A/f]˙XRaafXRaaA
29 28 albii a[˙A/f]˙XRaafaXRaaA
30 20 29 bitri [˙A/f]˙aXRaafaXRaaA
31 sbcel2gv AB[˙A/f]˙YfYA
32 4 31 ax-mp [˙A/f]˙YfYA
33 30 32 imbi12i [˙A/f]˙aXRaaf[˙A/f]˙YfaXRaaAYA
34 19 33 bitri [˙A/f]˙aXRaafYfaXRaaAYA
35 17 34 imbi12i [˙A/f]˙Rhereditaryf[˙A/f]˙aXRaafYfRhereditaryAaXRaaAYA
36 8 35 bitri [˙A/f]˙RhereditaryfaXRaafYfRhereditaryAaXRaaAYA
37 6 36 imbitrdi fRhereditaryfaXRaafYfXt+RYXt+RYRhereditaryAaXRaaAYA
38 5 37 ax-mp Xt+RYRhereditaryAaXRaaAYA