Metamath Proof Explorer


Theorem frege78

Description: Commuted form of of frege77 . Proposition 78 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege78.x X U
frege78.y Y V
frege78.r R W
frege78.a A B
Assertion frege78 R hereditary A a X R a a A X t+ R Y Y A

Proof

Step Hyp Ref Expression
1 frege78.x X U
2 frege78.y Y V
3 frege78.r R W
4 frege78.a A B
5 1 2 3 4 frege77 X t+ R Y R hereditary A a X R a a A Y A
6 frege17 X t+ R Y R hereditary A a X R a a A Y A R hereditary A a X R a a A X t+ R Y Y A
7 5 6 ax-mp R hereditary A a X R a a A X t+ R Y Y A