Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Following in a sequence
frege79
Metamath Proof Explorer
Description: Distributed form of frege78 . Proposition 79 of Frege1879 p. 63.
(Contributed by RP , 1-Jul-2020) (Revised by RP , 3-Jul-2020)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
frege79.x
⊢ X ∈ U
frege79.y
⊢ Y ∈ V
frege79.r
⊢ R ∈ W
frege79.a
⊢ A ∈ B
Assertion
frege79
⊢ R hereditary A → ∀ a X R a → a ∈ A → R hereditary A → X t+ ⁡ R Y → Y ∈ A
Proof
Step
Hyp
Ref
Expression
1
frege79.x
⊢ X ∈ U
2
frege79.y
⊢ Y ∈ V
3
frege79.r
⊢ R ∈ W
4
frege79.a
⊢ A ∈ B
5
1 2 3 4
frege78
⊢ R hereditary A → ∀ a X R a → a ∈ A → X t+ ⁡ R Y → Y ∈ A
6
ax-frege2
⊢ R hereditary A → ∀ a X R a → a ∈ A → X t+ ⁡ R Y → Y ∈ A → R hereditary A → ∀ a X R a → a ∈ A → R hereditary A → X t+ ⁡ R Y → Y ∈ A
7
5 6
ax-mp
⊢ R hereditary A → ∀ a X R a → a ∈ A → R hereditary A → X t+ ⁡ R Y → Y ∈ A