Metamath Proof Explorer


Theorem frege79

Description: Distributed form of frege78 . Proposition 79 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 3-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege79.x X U
frege79.y Y V
frege79.r R W
frege79.a A B
Assertion frege79 R hereditary A a X R a a A R hereditary A X t+ R Y Y A

Proof

Step Hyp Ref Expression
1 frege79.x X U
2 frege79.y Y V
3 frege79.r R W
4 frege79.a A B
5 1 2 3 4 frege78 R hereditary A a X R a a A X t+ R Y Y A
6 ax-frege2 R hereditary A a X R a a A X t+ R Y Y A R hereditary A a X R a a A R hereditary A X t+ R Y Y A
7 5 6 ax-mp R hereditary A a X R a a A R hereditary A X t+ R Y Y A