Description: Distributed form of frege78 . Proposition 79 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 3-Jul-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege79.x | |- X e. U |
|
| frege79.y | |- Y e. V |
||
| frege79.r | |- R e. W |
||
| frege79.a | |- A e. B |
||
| Assertion | frege79 | |- ( ( R hereditary A -> A. a ( X R a -> a e. A ) ) -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege79.x | |- X e. U |
|
| 2 | frege79.y | |- Y e. V |
|
| 3 | frege79.r | |- R e. W |
|
| 4 | frege79.a | |- A e. B |
|
| 5 | 1 2 3 4 | frege78 | |- ( R hereditary A -> ( A. a ( X R a -> a e. A ) -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) |
| 6 | ax-frege2 | |- ( ( R hereditary A -> ( A. a ( X R a -> a e. A ) -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) -> ( ( R hereditary A -> A. a ( X R a -> a e. A ) ) -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( R hereditary A -> A. a ( X R a -> a e. A ) ) -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) |