Description: Add additional condition to both clauses of frege79 . Proposition 80 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege80.x | |- X e. U |
|
frege80.y | |- Y e. V |
||
frege80.r | |- R e. W |
||
frege80.a | |- A e. B |
||
Assertion | frege80 | |- ( ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) ) -> ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege80.x | |- X e. U |
|
2 | frege80.y | |- Y e. V |
|
3 | frege80.r | |- R e. W |
|
4 | frege80.a | |- A e. B |
|
5 | 1 2 3 4 | frege79 | |- ( ( R hereditary A -> A. a ( X R a -> a e. A ) ) -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) |
6 | frege5 | |- ( ( ( R hereditary A -> A. a ( X R a -> a e. A ) ) -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) -> ( ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) ) -> ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) ) |
|
7 | 5 6 | ax-mp | |- ( ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) ) -> ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) |