Metamath Proof Explorer


Theorem frege80

Description: Add additional condition to both clauses of frege79 . Proposition 80 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege80.x
|- X e. U
frege80.y
|- Y e. V
frege80.r
|- R e. W
frege80.a
|- A e. B
Assertion frege80
|- ( ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) ) -> ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) )

Proof

Step Hyp Ref Expression
1 frege80.x
 |-  X e. U
2 frege80.y
 |-  Y e. V
3 frege80.r
 |-  R e. W
4 frege80.a
 |-  A e. B
5 1 2 3 4 frege79
 |-  ( ( R hereditary A -> A. a ( X R a -> a e. A ) ) -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) )
6 frege5
 |-  ( ( ( R hereditary A -> A. a ( X R a -> a e. A ) ) -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) -> ( ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) ) -> ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) )
7 5 6 ax-mp
 |-  ( ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) ) -> ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) )