Metamath Proof Explorer


Theorem frege81

Description: If X has a property A that is hereditary in the R -sequence, and if Y follows X in the R -sequence, then Y has property A . This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege81.x
|- X e. U
frege81.y
|- Y e. V
frege81.r
|- R e. W
frege81.a
|- A e. B
Assertion frege81
|- ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) )

Proof

Step Hyp Ref Expression
1 frege81.x
 |-  X e. U
2 frege81.y
 |-  Y e. V
3 frege81.r
 |-  R e. W
4 frege81.a
 |-  A e. B
5 vex
 |-  a e. _V
6 1 5 frege74
 |-  ( X e. A -> ( R hereditary A -> ( X R a -> a e. A ) ) )
7 6 alrimdv
 |-  ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) )
8 1 2 3 4 frege80
 |-  ( ( X e. A -> ( R hereditary A -> A. a ( X R a -> a e. A ) ) ) -> ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) )
9 7 8 ax-mp
 |-  ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) )