Metamath Proof Explorer


Theorem frege81

Description: If X has a property A that is hereditary in the R -sequence, and if Y follows X in the R -sequence, then Y has property A . This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege81.x X U
frege81.y Y V
frege81.r R W
frege81.a A B
Assertion frege81 X A R hereditary A X t+ R Y Y A

Proof

Step Hyp Ref Expression
1 frege81.x X U
2 frege81.y Y V
3 frege81.r R W
4 frege81.a A B
5 vex a V
6 1 5 frege74 X A R hereditary A X R a a A
7 6 alrimdv X A R hereditary A a X R a a A
8 1 2 3 4 frege80 X A R hereditary A a X R a a A X A R hereditary A X t+ R Y Y A
9 7 8 ax-mp X A R hereditary A X t+ R Y Y A