Metamath Proof Explorer


Theorem frege81

Description: If X has a property A that is hereditary in the R -sequence, and if Y follows X in the R -sequence, then Y has property A . This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of Frege1879 p. 63. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege81.x 𝑋𝑈
frege81.y 𝑌𝑉
frege81.r 𝑅𝑊
frege81.a 𝐴𝐵
Assertion frege81 ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 frege81.x 𝑋𝑈
2 frege81.y 𝑌𝑉
3 frege81.r 𝑅𝑊
4 frege81.a 𝐴𝐵
5 vex 𝑎 ∈ V
6 1 5 frege74 ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 𝑅 𝑎𝑎𝐴 ) ) )
7 6 alrimdv ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝐴 ) ) )
8 1 2 3 4 frege80 ( ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝐴 ) ) ) → ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) ) )
9 7 8 ax-mp ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) )