Metamath Proof Explorer


Theorem frege82

Description: Closed-form deduction based on frege81 . Proposition 82 of Frege1879 p. 64. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege82.x 𝑋𝑈
frege82.y 𝑌𝑉
frege82.r 𝑅𝑊
frege82.a 𝐴𝐵
Assertion frege82 ( ( 𝜑𝑋𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝜑 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege82.x 𝑋𝑈
2 frege82.y 𝑌𝑉
3 frege82.r 𝑅𝑊
4 frege82.a 𝐴𝐵
5 1 2 3 4 frege81 ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) )
6 frege18 ( ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) ) → ( ( 𝜑𝑋𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝜑 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) ) ) )
7 5 6 ax-mp ( ( 𝜑𝑋𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝜑 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) ) )