Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Following in a sequence
frege82
Metamath Proof Explorer
Description: Closed-form deduction based on frege81 . Proposition 82 of
Frege1879 p. 64. (Contributed by RP , 1-Jul-2020) (Revised by RP , 5-Jul-2020) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
frege82.x
⊢ 𝑋 ∈ 𝑈
frege82.y
⊢ 𝑌 ∈ 𝑉
frege82.r
⊢ 𝑅 ∈ 𝑊
frege82.a
⊢ 𝐴 ∈ 𝐵
Assertion
frege82
⊢ ( ( 𝜑 → 𝑋 ∈ 𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝜑 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑌 ∈ 𝐴 ) ) ) )
Proof
Step
Hyp
Ref
Expression
1
frege82.x
⊢ 𝑋 ∈ 𝑈
2
frege82.y
⊢ 𝑌 ∈ 𝑉
3
frege82.r
⊢ 𝑅 ∈ 𝑊
4
frege82.a
⊢ 𝐴 ∈ 𝐵
5
1 2 3 4
frege81
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑌 ∈ 𝐴 ) ) )
6
frege18
⊢ ( ( 𝑋 ∈ 𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑌 ∈ 𝐴 ) ) ) → ( ( 𝜑 → 𝑋 ∈ 𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝜑 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑌 ∈ 𝐴 ) ) ) ) )
7
5 6
ax-mp
⊢ ( ( 𝜑 → 𝑋 ∈ 𝐴 ) → ( 𝑅 hereditary 𝐴 → ( 𝜑 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑌 ∈ 𝐴 ) ) ) )