Metamath Proof Explorer


Theorem frege82

Description: Closed-form deduction based on frege81 . Proposition 82 of Frege1879 p. 64. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege82.x
|- X e. U
frege82.y
|- Y e. V
frege82.r
|- R e. W
frege82.a
|- A e. B
Assertion frege82
|- ( ( ph -> X e. A ) -> ( R hereditary A -> ( ph -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) )

Proof

Step Hyp Ref Expression
1 frege82.x
 |-  X e. U
2 frege82.y
 |-  Y e. V
3 frege82.r
 |-  R e. W
4 frege82.a
 |-  A e. B
5 1 2 3 4 frege81
 |-  ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) )
6 frege18
 |-  ( ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) -> ( ( ph -> X e. A ) -> ( R hereditary A -> ( ph -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) )
7 5 6 ax-mp
 |-  ( ( ph -> X e. A ) -> ( R hereditary A -> ( ph -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) )