Description: Closed-form deduction based on frege81 . Proposition 82 of Frege1879 p. 64. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege82.x | |- X e. U |
|
| frege82.y | |- Y e. V |
||
| frege82.r | |- R e. W |
||
| frege82.a | |- A e. B |
||
| Assertion | frege82 | |- ( ( ph -> X e. A ) -> ( R hereditary A -> ( ph -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege82.x | |- X e. U |
|
| 2 | frege82.y | |- Y e. V |
|
| 3 | frege82.r | |- R e. W |
|
| 4 | frege82.a | |- A e. B |
|
| 5 | 1 2 3 4 | frege81 | |- ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) |
| 6 | frege18 | |- ( ( X e. A -> ( R hereditary A -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) -> ( ( ph -> X e. A ) -> ( R hereditary A -> ( ph -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( ph -> X e. A ) -> ( R hereditary A -> ( ph -> ( X ( t+ ` R ) Y -> Y e. A ) ) ) ) |