Description: Apply commuted form of frege81 when the property R is hereditary in a disjunction of two properties, only one of which is known to be held by X . Proposition 83 of Frege1879 p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege83.x | |- X e. S |
|
frege83.y | |- Y e. T |
||
frege83.r | |- R e. U |
||
frege83.b | |- B e. V |
||
frege83.c | |- C e. W |
||
Assertion | frege83 | |- ( R hereditary ( B u. C ) -> ( X e. B -> ( X ( t+ ` R ) Y -> Y e. ( B u. C ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege83.x | |- X e. S |
|
2 | frege83.y | |- Y e. T |
|
3 | frege83.r | |- R e. U |
|
4 | frege83.b | |- B e. V |
|
5 | frege83.c | |- C e. W |
|
6 | frege36 | |- ( X e. B -> ( -. X e. B -> X e. C ) ) |
|
7 | elun | |- ( X e. ( B u. C ) <-> ( X e. B \/ X e. C ) ) |
|
8 | df-or | |- ( ( X e. B \/ X e. C ) <-> ( -. X e. B -> X e. C ) ) |
|
9 | 7 8 | bitri | |- ( X e. ( B u. C ) <-> ( -. X e. B -> X e. C ) ) |
10 | 6 9 | sylibr | |- ( X e. B -> X e. ( B u. C ) ) |
11 | 4 | elexi | |- B e. _V |
12 | 5 | elexi | |- C e. _V |
13 | 11 12 | unex | |- ( B u. C ) e. _V |
14 | 1 2 3 13 | frege82 | |- ( ( X e. B -> X e. ( B u. C ) ) -> ( R hereditary ( B u. C ) -> ( X e. B -> ( X ( t+ ` R ) Y -> Y e. ( B u. C ) ) ) ) ) |
15 | 10 14 | ax-mp | |- ( R hereditary ( B u. C ) -> ( X e. B -> ( X ( t+ ` R ) Y -> Y e. ( B u. C ) ) ) ) |