Metamath Proof Explorer


Theorem frege83

Description: Apply commuted form of frege81 when the property R is hereditary in a disjunction of two properties, only one of which is known to be held by X . Proposition 83 of Frege1879 p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege83.x
|- X e. S
frege83.y
|- Y e. T
frege83.r
|- R e. U
frege83.b
|- B e. V
frege83.c
|- C e. W
Assertion frege83
|- ( R hereditary ( B u. C ) -> ( X e. B -> ( X ( t+ ` R ) Y -> Y e. ( B u. C ) ) ) )

Proof

Step Hyp Ref Expression
1 frege83.x
 |-  X e. S
2 frege83.y
 |-  Y e. T
3 frege83.r
 |-  R e. U
4 frege83.b
 |-  B e. V
5 frege83.c
 |-  C e. W
6 frege36
 |-  ( X e. B -> ( -. X e. B -> X e. C ) )
7 elun
 |-  ( X e. ( B u. C ) <-> ( X e. B \/ X e. C ) )
8 df-or
 |-  ( ( X e. B \/ X e. C ) <-> ( -. X e. B -> X e. C ) )
9 7 8 bitri
 |-  ( X e. ( B u. C ) <-> ( -. X e. B -> X e. C ) )
10 6 9 sylibr
 |-  ( X e. B -> X e. ( B u. C ) )
11 4 elexi
 |-  B e. _V
12 5 elexi
 |-  C e. _V
13 11 12 unex
 |-  ( B u. C ) e. _V
14 1 2 3 13 frege82
 |-  ( ( X e. B -> X e. ( B u. C ) ) -> ( R hereditary ( B u. C ) -> ( X e. B -> ( X ( t+ ` R ) Y -> Y e. ( B u. C ) ) ) ) )
15 10 14 ax-mp
 |-  ( R hereditary ( B u. C ) -> ( X e. B -> ( X ( t+ ` R ) Y -> Y e. ( B u. C ) ) ) )