Metamath Proof Explorer


Theorem frege83

Description: Apply commuted form of frege81 when the property R is hereditary in a disjunction of two properties, only one of which is known to be held by X . Proposition 83 of Frege1879 p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege83.x 𝑋𝑆
frege83.y 𝑌𝑇
frege83.r 𝑅𝑈
frege83.b 𝐵𝑉
frege83.c 𝐶𝑊
Assertion frege83 ( 𝑅 hereditary ( 𝐵𝐶 ) → ( 𝑋𝐵 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌 ∈ ( 𝐵𝐶 ) ) ) )

Proof

Step Hyp Ref Expression
1 frege83.x 𝑋𝑆
2 frege83.y 𝑌𝑇
3 frege83.r 𝑅𝑈
4 frege83.b 𝐵𝑉
5 frege83.c 𝐶𝑊
6 frege36 ( 𝑋𝐵 → ( ¬ 𝑋𝐵𝑋𝐶 ) )
7 elun ( 𝑋 ∈ ( 𝐵𝐶 ) ↔ ( 𝑋𝐵𝑋𝐶 ) )
8 df-or ( ( 𝑋𝐵𝑋𝐶 ) ↔ ( ¬ 𝑋𝐵𝑋𝐶 ) )
9 7 8 bitri ( 𝑋 ∈ ( 𝐵𝐶 ) ↔ ( ¬ 𝑋𝐵𝑋𝐶 ) )
10 6 9 sylibr ( 𝑋𝐵𝑋 ∈ ( 𝐵𝐶 ) )
11 4 elexi 𝐵 ∈ V
12 5 elexi 𝐶 ∈ V
13 11 12 unex ( 𝐵𝐶 ) ∈ V
14 1 2 3 13 frege82 ( ( 𝑋𝐵𝑋 ∈ ( 𝐵𝐶 ) ) → ( 𝑅 hereditary ( 𝐵𝐶 ) → ( 𝑋𝐵 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌 ∈ ( 𝐵𝐶 ) ) ) ) )
15 10 14 ax-mp ( 𝑅 hereditary ( 𝐵𝐶 ) → ( 𝑋𝐵 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌 ∈ ( 𝐵𝐶 ) ) ) )