| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege83.x |
⊢ 𝑋 ∈ 𝑆 |
| 2 |
|
frege83.y |
⊢ 𝑌 ∈ 𝑇 |
| 3 |
|
frege83.r |
⊢ 𝑅 ∈ 𝑈 |
| 4 |
|
frege83.b |
⊢ 𝐵 ∈ 𝑉 |
| 5 |
|
frege83.c |
⊢ 𝐶 ∈ 𝑊 |
| 6 |
|
frege36 |
⊢ ( 𝑋 ∈ 𝐵 → ( ¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶 ) ) |
| 7 |
|
elun |
⊢ ( 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) |
| 8 |
|
df-or |
⊢ ( ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ↔ ( ¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶 ) ) |
| 9 |
7 8
|
bitri |
⊢ ( 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( ¬ 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐶 ) ) |
| 10 |
6 9
|
sylibr |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ) |
| 11 |
4
|
elexi |
⊢ 𝐵 ∈ V |
| 12 |
5
|
elexi |
⊢ 𝐶 ∈ V |
| 13 |
11 12
|
unex |
⊢ ( 𝐵 ∪ 𝐶 ) ∈ V |
| 14 |
1 2 3 13
|
frege82 |
⊢ ( ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ) → ( 𝑅 hereditary ( 𝐵 ∪ 𝐶 ) → ( 𝑋 ∈ 𝐵 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑌 ∈ ( 𝐵 ∪ 𝐶 ) ) ) ) ) |
| 15 |
10 14
|
ax-mp |
⊢ ( 𝑅 hereditary ( 𝐵 ∪ 𝐶 ) → ( 𝑋 ∈ 𝐵 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑌 ∈ ( 𝐵 ∪ 𝐶 ) ) ) ) |