Metamath Proof Explorer


Theorem frege84

Description: Commuted form of frege81 . Proposition 84 of Frege1879 p. 65. (Contributed by RP, 1-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege84.x 𝑋𝑈
frege84.y 𝑌𝑉
frege84.r 𝑅𝑊
frege84.a 𝐴𝐵
Assertion frege84 ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 frege84.x 𝑋𝑈
2 frege84.y 𝑌𝑉
3 frege84.r 𝑅𝑊
4 frege84.a 𝐴𝐵
5 1 2 3 4 frege81 ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) )
6 ax-frege8 ( ( 𝑋𝐴 → ( 𝑅 hereditary 𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) ) → ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) ) )
7 5 6 ax-mp ( 𝑅 hereditary 𝐴 → ( 𝑋𝐴 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑌𝐴 ) ) )