Metamath Proof Explorer


Theorem frege90

Description: Add antecedent to frege89 . Proposition 90 of Frege1879 p. 68. (Contributed by RP, 1-Jul-2020) (Revised by RP, 2-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege90.x
|- X e. U
frege90.y
|- Y e. V
frege90.r
|- R e. W
Assertion frege90
|- ( ( ph -> A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) ) -> ( ph -> X ( t+ ` R ) Y ) )

Proof

Step Hyp Ref Expression
1 frege90.x
 |-  X e. U
2 frege90.y
 |-  Y e. V
3 frege90.r
 |-  R e. W
4 1 2 3 frege89
 |-  ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y )
5 frege5
 |-  ( ( A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) -> X ( t+ ` R ) Y ) -> ( ( ph -> A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) ) -> ( ph -> X ( t+ ` R ) Y ) ) )
6 4 5 ax-mp
 |-  ( ( ph -> A. f ( R hereditary f -> ( A. w ( X R w -> w e. f ) -> Y e. f ) ) ) -> ( ph -> X ( t+ ` R ) Y ) )