Metamath Proof Explorer


Theorem frege91

Description: Every result of an application of a procedure R to an object X follows that X in the R -sequence. Proposition 91 of Frege1879 p. 68. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion frege91 ( 𝑋 𝑅 𝑌𝑋 ( t+ ‘ 𝑅 ) 𝑌 )

Proof

Step Hyp Ref Expression
1 frege91.x 𝑋𝑈
2 frege91.y 𝑌𝑉
3 frege91.r 𝑅𝑊
4 2 frege63c ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎 → ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → [ 𝑌 / 𝑎 ] 𝑎𝑓 ) ) )
5 sbcbr2g ( 𝑌𝑉 → ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎𝑋 𝑅 𝑌 / 𝑎 𝑎 ) )
6 csbvarg ( 𝑌𝑉 𝑌 / 𝑎 𝑎 = 𝑌 )
7 6 breq2d ( 𝑌𝑉 → ( 𝑋 𝑅 𝑌 / 𝑎 𝑎𝑋 𝑅 𝑌 ) )
8 5 7 bitrd ( 𝑌𝑉 → ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎𝑋 𝑅 𝑌 ) )
9 2 8 ax-mp ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎𝑋 𝑅 𝑌 )
10 sbcel1v ( [ 𝑌 / 𝑎 ] 𝑎𝑓𝑌𝑓 )
11 10 imbi2i ( ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → [ 𝑌 / 𝑎 ] 𝑎𝑓 ) ↔ ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → 𝑌𝑓 ) )
12 11 imbi2i ( ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → [ 𝑌 / 𝑎 ] 𝑎𝑓 ) ) ↔ ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → 𝑌𝑓 ) ) )
13 4 9 12 3imtr3i ( 𝑋 𝑅 𝑌 → ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → 𝑌𝑓 ) ) )
14 13 alrimiv ( 𝑋 𝑅 𝑌 → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → 𝑌𝑓 ) ) )
15 1 2 3 frege90 ( ( 𝑋 𝑅 𝑌 → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎𝑎𝑓 ) → 𝑌𝑓 ) ) ) → ( 𝑋 𝑅 𝑌𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) )
16 14 15 ax-mp ( 𝑋 𝑅 𝑌𝑋 ( t+ ‘ 𝑅 ) 𝑌 )