Step |
Hyp |
Ref |
Expression |
1 |
|
frege91.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege91.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
|
frege91.r |
⊢ 𝑅 ∈ 𝑊 |
4 |
2
|
frege63c |
⊢ ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎 → ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → [ 𝑌 / 𝑎 ] 𝑎 ∈ 𝑓 ) ) ) |
5 |
|
sbcbr2g |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎 ↔ 𝑋 𝑅 ⦋ 𝑌 / 𝑎 ⦌ 𝑎 ) ) |
6 |
|
csbvarg |
⊢ ( 𝑌 ∈ 𝑉 → ⦋ 𝑌 / 𝑎 ⦌ 𝑎 = 𝑌 ) |
7 |
6
|
breq2d |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 𝑅 ⦋ 𝑌 / 𝑎 ⦌ 𝑎 ↔ 𝑋 𝑅 𝑌 ) ) |
8 |
5 7
|
bitrd |
⊢ ( 𝑌 ∈ 𝑉 → ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎 ↔ 𝑋 𝑅 𝑌 ) ) |
9 |
2 8
|
ax-mp |
⊢ ( [ 𝑌 / 𝑎 ] 𝑋 𝑅 𝑎 ↔ 𝑋 𝑅 𝑌 ) |
10 |
|
sbcel1v |
⊢ ( [ 𝑌 / 𝑎 ] 𝑎 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓 ) |
11 |
10
|
imbi2i |
⊢ ( ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → [ 𝑌 / 𝑎 ] 𝑎 ∈ 𝑓 ) ↔ ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) |
12 |
11
|
imbi2i |
⊢ ( ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → [ 𝑌 / 𝑎 ] 𝑎 ∈ 𝑓 ) ) ↔ ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) |
13 |
4 9 12
|
3imtr3i |
⊢ ( 𝑋 𝑅 𝑌 → ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) |
14 |
13
|
alrimiv |
⊢ ( 𝑋 𝑅 𝑌 → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) |
15 |
1 2 3
|
frege90 |
⊢ ( ( 𝑋 𝑅 𝑌 → ∀ 𝑓 ( 𝑅 hereditary 𝑓 → ( ∀ 𝑎 ( 𝑋 𝑅 𝑎 → 𝑎 ∈ 𝑓 ) → 𝑌 ∈ 𝑓 ) ) ) → ( 𝑋 𝑅 𝑌 → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
16 |
14 15
|
ax-mp |
⊢ ( 𝑋 𝑅 𝑌 → 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) |