Step |
Hyp |
Ref |
Expression |
1 |
|
frege91.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege91.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
|
frege91.r |
⊢ 𝑅 ∈ 𝑊 |
4 |
|
vex |
⊢ 𝑤 ∈ V |
5 |
4 2 3
|
frege91 |
⊢ ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) |
6 |
5
|
sbcth |
⊢ ( 𝑋 ∈ 𝑈 → [ 𝑋 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
7 |
|
frege53c |
⊢ ( [ 𝑋 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) → ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑋 ∈ 𝑈 → ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
9 |
|
sbcim1 |
⊢ ( [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 → [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
10 |
9
|
imim2i |
⊢ ( ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) → ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 → [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
11 |
|
dfsbcq |
⊢ ( 𝑋 = 𝑍 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 ) ) |
12 |
|
sbcbr1g |
⊢ ( 𝑋 ∈ 𝑈 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ ⦋ 𝑋 / 𝑤 ⦌ 𝑤 𝑅 𝑌 ) ) |
13 |
|
csbvarg |
⊢ ( 𝑋 ∈ 𝑈 → ⦋ 𝑋 / 𝑤 ⦌ 𝑤 = 𝑋 ) |
14 |
13
|
breq1d |
⊢ ( 𝑋 ∈ 𝑈 → ( ⦋ 𝑋 / 𝑤 ⦌ 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) ) |
15 |
12 14
|
bitrd |
⊢ ( 𝑋 ∈ 𝑈 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) ) |
16 |
1 15
|
ax-mp |
⊢ ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) |
17 |
11 16
|
bitr3di |
⊢ ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) ) |
18 |
|
eqcom |
⊢ ( 𝑋 = 𝑍 ↔ 𝑍 = 𝑋 ) |
19 |
18
|
biimpi |
⊢ ( 𝑋 = 𝑍 → 𝑍 = 𝑋 ) |
20 |
19 1
|
eqeltrdi |
⊢ ( 𝑋 = 𝑍 → 𝑍 ∈ 𝑈 ) |
21 |
|
sbcbr1g |
⊢ ( 𝑍 ∈ 𝑈 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ ⦋ 𝑍 / 𝑤 ⦌ 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
22 |
|
csbvarg |
⊢ ( 𝑍 ∈ 𝑈 → ⦋ 𝑍 / 𝑤 ⦌ 𝑤 = 𝑍 ) |
23 |
22
|
breq1d |
⊢ ( 𝑍 ∈ 𝑈 → ( ⦋ 𝑍 / 𝑤 ⦌ 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
24 |
21 23
|
bitrd |
⊢ ( 𝑍 ∈ 𝑈 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
25 |
20 24
|
syl |
⊢ ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
26 |
17 25
|
imbi12d |
⊢ ( 𝑋 = 𝑍 → ( ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 → [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ↔ ( 𝑋 𝑅 𝑌 → 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
27 |
10 26
|
mpbidi |
⊢ ( ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) → ( 𝑋 = 𝑍 → ( 𝑋 𝑅 𝑌 → 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
28 |
1 8 27
|
mp2b |
⊢ ( 𝑋 = 𝑍 → ( 𝑋 𝑅 𝑌 → 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |