Metamath Proof Explorer


Theorem frege92

Description: Inference from frege91 . Proposition 92 of Frege1879 p. 69. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion frege92 ( 𝑋 = 𝑍 → ( 𝑋 𝑅 𝑌𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 frege91.x 𝑋𝑈
2 frege91.y 𝑌𝑉
3 frege91.r 𝑅𝑊
4 vex 𝑤 ∈ V
5 4 2 3 frege91 ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 )
6 5 sbcth ( 𝑋𝑈[ 𝑋 / 𝑤 ] ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) )
7 frege53c ( [ 𝑋 / 𝑤 ] ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) → ( 𝑋 = 𝑍[ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) )
8 6 7 syl ( 𝑋𝑈 → ( 𝑋 = 𝑍[ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) )
9 sbcim1 ( [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌[ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) )
10 9 imim2i ( ( 𝑋 = 𝑍[ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) → ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌[ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) )
11 dfsbcq ( 𝑋 = 𝑍 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌[ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 ) )
12 sbcbr1g ( 𝑋𝑈 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 𝑋 / 𝑤 𝑤 𝑅 𝑌 ) )
13 csbvarg ( 𝑋𝑈 𝑋 / 𝑤 𝑤 = 𝑋 )
14 13 breq1d ( 𝑋𝑈 → ( 𝑋 / 𝑤 𝑤 𝑅 𝑌𝑋 𝑅 𝑌 ) )
15 12 14 bitrd ( 𝑋𝑈 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌𝑋 𝑅 𝑌 ) )
16 1 15 ax-mp ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌𝑋 𝑅 𝑌 )
17 11 16 bitr3di ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌𝑋 𝑅 𝑌 ) )
18 eqcom ( 𝑋 = 𝑍𝑍 = 𝑋 )
19 18 biimpi ( 𝑋 = 𝑍𝑍 = 𝑋 )
20 19 1 eqeltrdi ( 𝑋 = 𝑍𝑍𝑈 )
21 sbcbr1g ( 𝑍𝑈 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 𝑍 / 𝑤 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) )
22 csbvarg ( 𝑍𝑈 𝑍 / 𝑤 𝑤 = 𝑍 )
23 22 breq1d ( 𝑍𝑈 → ( 𝑍 / 𝑤 𝑤 ( t+ ‘ 𝑅 ) 𝑌𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) )
24 21 23 bitrd ( 𝑍𝑈 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) )
25 20 24 syl ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) )
26 17 25 imbi12d ( 𝑋 = 𝑍 → ( ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌[ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ↔ ( 𝑋 𝑅 𝑌𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) )
27 10 26 mpbidi ( ( 𝑋 = 𝑍[ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) → ( 𝑋 = 𝑍 → ( 𝑋 𝑅 𝑌𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) )
28 1 8 27 mp2b ( 𝑋 = 𝑍 → ( 𝑋 𝑅 𝑌𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) )