| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege91.x |
⊢ 𝑋 ∈ 𝑈 |
| 2 |
|
frege91.y |
⊢ 𝑌 ∈ 𝑉 |
| 3 |
|
frege91.r |
⊢ 𝑅 ∈ 𝑊 |
| 4 |
|
vex |
⊢ 𝑤 ∈ V |
| 5 |
4 2 3
|
frege91 |
⊢ ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) |
| 6 |
5
|
sbcth |
⊢ ( 𝑋 ∈ 𝑈 → [ 𝑋 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
| 7 |
|
frege53c |
⊢ ( [ 𝑋 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) → ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑋 ∈ 𝑈 → ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
| 9 |
|
sbcim1 |
⊢ ( [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 → [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
| 10 |
9
|
imim2i |
⊢ ( ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) → ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 → [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
| 11 |
|
dfsbcq |
⊢ ( 𝑋 = 𝑍 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 ) ) |
| 12 |
|
sbcbr1g |
⊢ ( 𝑋 ∈ 𝑈 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ ⦋ 𝑋 / 𝑤 ⦌ 𝑤 𝑅 𝑌 ) ) |
| 13 |
|
csbvarg |
⊢ ( 𝑋 ∈ 𝑈 → ⦋ 𝑋 / 𝑤 ⦌ 𝑤 = 𝑋 ) |
| 14 |
13
|
breq1d |
⊢ ( 𝑋 ∈ 𝑈 → ( ⦋ 𝑋 / 𝑤 ⦌ 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) ) |
| 15 |
12 14
|
bitrd |
⊢ ( 𝑋 ∈ 𝑈 → ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) ) |
| 16 |
1 15
|
ax-mp |
⊢ ( [ 𝑋 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) |
| 17 |
11 16
|
bitr3di |
⊢ ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 ↔ 𝑋 𝑅 𝑌 ) ) |
| 18 |
|
eqcom |
⊢ ( 𝑋 = 𝑍 ↔ 𝑍 = 𝑋 ) |
| 19 |
18
|
biimpi |
⊢ ( 𝑋 = 𝑍 → 𝑍 = 𝑋 ) |
| 20 |
19 1
|
eqeltrdi |
⊢ ( 𝑋 = 𝑍 → 𝑍 ∈ 𝑈 ) |
| 21 |
|
sbcbr1g |
⊢ ( 𝑍 ∈ 𝑈 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ ⦋ 𝑍 / 𝑤 ⦌ 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
| 22 |
|
csbvarg |
⊢ ( 𝑍 ∈ 𝑈 → ⦋ 𝑍 / 𝑤 ⦌ 𝑤 = 𝑍 ) |
| 23 |
22
|
breq1d |
⊢ ( 𝑍 ∈ 𝑈 → ( ⦋ 𝑍 / 𝑤 ⦌ 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
| 24 |
21 23
|
bitrd |
⊢ ( 𝑍 ∈ 𝑈 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
| 25 |
20 24
|
syl |
⊢ ( 𝑋 = 𝑍 → ( [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ↔ 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |
| 26 |
17 25
|
imbi12d |
⊢ ( 𝑋 = 𝑍 → ( ( [ 𝑍 / 𝑤 ] 𝑤 𝑅 𝑌 → [ 𝑍 / 𝑤 ] 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ↔ ( 𝑋 𝑅 𝑌 → 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
| 27 |
10 26
|
mpbidi |
⊢ ( ( 𝑋 = 𝑍 → [ 𝑍 / 𝑤 ] ( 𝑤 𝑅 𝑌 → 𝑤 ( t+ ‘ 𝑅 ) 𝑌 ) ) → ( 𝑋 = 𝑍 → ( 𝑋 𝑅 𝑌 → 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) ) |
| 28 |
1 8 27
|
mp2b |
⊢ ( 𝑋 = 𝑍 → ( 𝑋 𝑅 𝑌 → 𝑍 ( t+ ‘ 𝑅 ) 𝑌 ) ) |