Metamath Proof Explorer


Theorem frege94

Description: Looking one past a pair related by transitive closure of a relation. Proposition 94 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege94.x
|- X e. U
frege94.z
|- Z e. V
frege94.r
|- R e. W
Assertion frege94
|- ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) )

Proof

Step Hyp Ref Expression
1 frege94.x
 |-  X e. U
2 frege94.z
 |-  Z e. V
3 frege94.r
 |-  R e. W
4 1 2 3 frege93
 |-  ( A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) -> X ( t+ ` R ) Z )
5 frege7
 |-  ( ( A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) -> X ( t+ ` R ) Z ) -> ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) ) )
6 4 5 ax-mp
 |-  ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) )