Description: Looking one past a pair related by transitive closure of a relation. Proposition 94 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 5-Jul-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege94.x | |- X e. U |
|
| frege94.z | |- Z e. V |
||
| frege94.r | |- R e. W |
||
| Assertion | frege94 | |- ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege94.x | |- X e. U |
|
| 2 | frege94.z | |- Z e. V |
|
| 3 | frege94.r | |- R e. W |
|
| 4 | 1 2 3 | frege93 | |- ( A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) -> X ( t+ ` R ) Z ) |
| 5 | frege7 | |- ( ( A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) -> X ( t+ ` R ) Z ) -> ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) ) |