Description: Looking one past a pair related by transitive closure of a relation. Proposition 95 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege95.x | |- X e. U |
|
frege95.y | |- Y e. V |
||
frege95.z | |- Z e. W |
||
frege95.r | |- R e. A |
||
Assertion | frege95 | |- ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege95.x | |- X e. U |
|
2 | frege95.y | |- Y e. V |
|
3 | frege95.z | |- Z e. W |
|
4 | frege95.r | |- R e. A |
|
5 | vex | |- f e. _V |
|
6 | 1 2 3 4 5 | frege88 | |- ( Y R Z -> ( X ( t+ ` R ) Y -> ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) |
7 | 6 | alrimdv | |- ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) |
8 | 1 3 4 | frege94 | |- ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) ) |
9 | 7 8 | ax-mp | |- ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) |