Metamath Proof Explorer


Theorem frege95

Description: Looking one past a pair related by transitive closure of a relation. Proposition 95 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege95.x
|- X e. U
frege95.y
|- Y e. V
frege95.z
|- Z e. W
frege95.r
|- R e. A
Assertion frege95
|- ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) )

Proof

Step Hyp Ref Expression
1 frege95.x
 |-  X e. U
2 frege95.y
 |-  Y e. V
3 frege95.z
 |-  Z e. W
4 frege95.r
 |-  R e. A
5 vex
 |-  f e. _V
6 1 2 3 4 5 frege88
 |-  ( Y R Z -> ( X ( t+ ` R ) Y -> ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) )
7 6 alrimdv
 |-  ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) )
8 1 3 4 frege94
 |-  ( ( Y R Z -> ( X ( t+ ` R ) Y -> A. f ( A. w ( X R w -> w e. f ) -> ( R hereditary f -> Z e. f ) ) ) ) -> ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) )
9 7 8 ax-mp
 |-  ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) )