Step |
Hyp |
Ref |
Expression |
1 |
|
frege95.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege95.y |
⊢ 𝑌 ∈ 𝑉 |
3 |
|
frege95.z |
⊢ 𝑍 ∈ 𝑊 |
4 |
|
frege95.r |
⊢ 𝑅 ∈ 𝐴 |
5 |
|
vex |
⊢ 𝑓 ∈ V |
6 |
1 2 3 4 5
|
frege88 |
⊢ ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑍 ∈ 𝑓 ) ) ) ) |
7 |
6
|
alrimdv |
⊢ ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ∀ 𝑓 ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑍 ∈ 𝑓 ) ) ) ) |
8 |
1 3 4
|
frege94 |
⊢ ( ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ∀ 𝑓 ( ∀ 𝑤 ( 𝑋 𝑅 𝑤 → 𝑤 ∈ 𝑓 ) → ( 𝑅 hereditary 𝑓 → 𝑍 ∈ 𝑓 ) ) ) ) → ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) ) |