Metamath Proof Explorer


Theorem frege95

Description: Looking one past a pair related by transitive closure of a relation. Proposition 95 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege95.x 𝑋𝑈
frege95.y 𝑌𝑉
frege95.z 𝑍𝑊
frege95.r 𝑅𝐴
Assertion frege95 ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) )

Proof

Step Hyp Ref Expression
1 frege95.x 𝑋𝑈
2 frege95.y 𝑌𝑉
3 frege95.z 𝑍𝑊
4 frege95.r 𝑅𝐴
5 vex 𝑓 ∈ V
6 1 2 3 4 5 frege88 ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → ( 𝑅 hereditary 𝑓𝑍𝑓 ) ) ) )
7 6 alrimdv ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ∀ 𝑓 ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → ( 𝑅 hereditary 𝑓𝑍𝑓 ) ) ) )
8 1 3 4 frege94 ( ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ∀ 𝑓 ( ∀ 𝑤 ( 𝑋 𝑅 𝑤𝑤𝑓 ) → ( 𝑅 hereditary 𝑓𝑍𝑓 ) ) ) ) → ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) ) )
9 7 8 ax-mp ( 𝑌 𝑅 𝑍 → ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) )