Metamath Proof Explorer


Theorem frege95

Description: Looking one past a pair related by transitive closure of a relation. Proposition 95 of Frege1879 p. 70. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege95.x XU
frege95.y YV
frege95.z ZW
frege95.r RA
Assertion frege95 YRZXt+RYXt+RZ

Proof

Step Hyp Ref Expression
1 frege95.x XU
2 frege95.y YV
3 frege95.z ZW
4 frege95.r RA
5 vex fV
6 1 2 3 4 5 frege88 YRZXt+RYwXRwwfRhereditaryfZf
7 6 alrimdv YRZXt+RYfwXRwwfRhereditaryfZf
8 1 3 4 frege94 YRZXt+RYfwXRwwfRhereditaryfZfYRZXt+RYXt+RZ
9 7 8 ax-mp YRZXt+RYXt+RZ