Metamath Proof Explorer


Theorem frege88

Description: Commuted form of frege87 . Proposition 88 of Frege1879 p. 67. (Contributed by RP, 1-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege87.x XU
frege87.y YV
frege87.z ZW
frege87.r RS
frege87.a AB
Assertion frege88 YRZXt+RYwXRwwARhereditaryAZA

Proof

Step Hyp Ref Expression
1 frege87.x XU
2 frege87.y YV
3 frege87.z ZW
4 frege87.r RS
5 frege87.a AB
6 1 2 3 4 5 frege87 Xt+RYwXRwwARhereditaryAYRZZA
7 frege15 Xt+RYwXRwwARhereditaryAYRZZAYRZXt+RYwXRwwARhereditaryAZA
8 6 7 ax-mp YRZXt+RYwXRwwARhereditaryAZA