Metamath Proof Explorer


Theorem frege96

Description: Every result of an application of the procedure R to an object that follows X in the R -sequence follows X in the R -sequence. Proposition 96 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege95.x X U
frege95.y Y V
frege95.z Z W
frege95.r R A
Assertion frege96 X t+ R Y Y R Z X t+ R Z

Proof

Step Hyp Ref Expression
1 frege95.x X U
2 frege95.y Y V
3 frege95.z Z W
4 frege95.r R A
5 1 2 3 4 frege95 Y R Z X t+ R Y X t+ R Z
6 ax-frege8 Y R Z X t+ R Y X t+ R Z X t+ R Y Y R Z X t+ R Z
7 5 6 ax-mp X t+ R Y Y R Z X t+ R Z