Metamath Proof Explorer


Theorem frege96

Description: Every result of an application of the procedure R to an object that follows X in the R -sequence follows X in the R -sequence. Proposition 96 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege95.x
|- X e. U
frege95.y
|- Y e. V
frege95.z
|- Z e. W
frege95.r
|- R e. A
Assertion frege96
|- ( X ( t+ ` R ) Y -> ( Y R Z -> X ( t+ ` R ) Z ) )

Proof

Step Hyp Ref Expression
1 frege95.x
 |-  X e. U
2 frege95.y
 |-  Y e. V
3 frege95.z
 |-  Z e. W
4 frege95.r
 |-  R e. A
5 1 2 3 4 frege95
 |-  ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) )
6 ax-frege8
 |-  ( ( Y R Z -> ( X ( t+ ` R ) Y -> X ( t+ ` R ) Z ) ) -> ( X ( t+ ` R ) Y -> ( Y R Z -> X ( t+ ` R ) Z ) ) )
7 5 6 ax-mp
 |-  ( X ( t+ ` R ) Y -> ( Y R Z -> X ( t+ ` R ) Z ) )