Metamath Proof Explorer


Theorem frege97

Description: The property of following X in the R -sequence is hereditary in the R -sequence. Proposition 97 of Frege1879 p. 71.

Here we introduce the image of a singleton under a relation as class which stands for the property of following X in the R -sequence. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege97.x
|- X e. U
frege97.r
|- R e. W
Assertion frege97
|- R hereditary ( ( t+ ` R ) " { X } )

Proof

Step Hyp Ref Expression
1 frege97.x
 |-  X e. U
2 frege97.r
 |-  R e. W
3 frege75
 |-  ( A. b ( b e. ( ( t+ ` R ) " { X } ) -> A. a ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) ) -> R hereditary ( ( t+ ` R ) " { X } ) )
4 vex
 |-  b e. _V
5 vex
 |-  a e. _V
6 1 4 5 2 frege96
 |-  ( X ( t+ ` R ) b -> ( b R a -> X ( t+ ` R ) a ) )
7 df-br
 |-  ( X ( t+ ` R ) b <-> <. X , b >. e. ( t+ ` R ) )
8 1 elexi
 |-  X e. _V
9 8 4 elimasn
 |-  ( b e. ( ( t+ ` R ) " { X } ) <-> <. X , b >. e. ( t+ ` R ) )
10 7 9 bitr4i
 |-  ( X ( t+ ` R ) b <-> b e. ( ( t+ ` R ) " { X } ) )
11 df-br
 |-  ( X ( t+ ` R ) a <-> <. X , a >. e. ( t+ ` R ) )
12 8 5 elimasn
 |-  ( a e. ( ( t+ ` R ) " { X } ) <-> <. X , a >. e. ( t+ ` R ) )
13 11 12 bitr4i
 |-  ( X ( t+ ` R ) a <-> a e. ( ( t+ ` R ) " { X } ) )
14 13 imbi2i
 |-  ( ( b R a -> X ( t+ ` R ) a ) <-> ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) )
15 6 10 14 3imtr3i
 |-  ( b e. ( ( t+ ` R ) " { X } ) -> ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) )
16 15 alrimiv
 |-  ( b e. ( ( t+ ` R ) " { X } ) -> A. a ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) )
17 3 16 mpg
 |-  R hereditary ( ( t+ ` R ) " { X } )