Description: The property of following X in the R -sequence is hereditary in the R -sequence. Proposition 97 of Frege1879 p. 71.
Here we introduce the image of a singleton under a relation as class which stands for the property of following X in the R -sequence. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frege97.x | |- X e. U |
|
frege97.r | |- R e. W |
||
Assertion | frege97 | |- R hereditary ( ( t+ ` R ) " { X } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege97.x | |- X e. U |
|
2 | frege97.r | |- R e. W |
|
3 | frege75 | |- ( A. b ( b e. ( ( t+ ` R ) " { X } ) -> A. a ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) ) -> R hereditary ( ( t+ ` R ) " { X } ) ) |
|
4 | vex | |- b e. _V |
|
5 | vex | |- a e. _V |
|
6 | 1 4 5 2 | frege96 | |- ( X ( t+ ` R ) b -> ( b R a -> X ( t+ ` R ) a ) ) |
7 | df-br | |- ( X ( t+ ` R ) b <-> <. X , b >. e. ( t+ ` R ) ) |
|
8 | 1 | elexi | |- X e. _V |
9 | 8 4 | elimasn | |- ( b e. ( ( t+ ` R ) " { X } ) <-> <. X , b >. e. ( t+ ` R ) ) |
10 | 7 9 | bitr4i | |- ( X ( t+ ` R ) b <-> b e. ( ( t+ ` R ) " { X } ) ) |
11 | df-br | |- ( X ( t+ ` R ) a <-> <. X , a >. e. ( t+ ` R ) ) |
|
12 | 8 5 | elimasn | |- ( a e. ( ( t+ ` R ) " { X } ) <-> <. X , a >. e. ( t+ ` R ) ) |
13 | 11 12 | bitr4i | |- ( X ( t+ ` R ) a <-> a e. ( ( t+ ` R ) " { X } ) ) |
14 | 13 | imbi2i | |- ( ( b R a -> X ( t+ ` R ) a ) <-> ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) ) |
15 | 6 10 14 | 3imtr3i | |- ( b e. ( ( t+ ` R ) " { X } ) -> ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) ) |
16 | 15 | alrimiv | |- ( b e. ( ( t+ ` R ) " { X } ) -> A. a ( b R a -> a e. ( ( t+ ` R ) " { X } ) ) ) |
17 | 3 16 | mpg | |- R hereditary ( ( t+ ` R ) " { X } ) |