Metamath Proof Explorer


Theorem frege98

Description: If Y follows X and Z follows Y in the R -sequence then Z follows X in the R -sequence because the transitive closure of a relation has the transitive property. Proposition 98 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020) (Revised by RP, 6-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege98.x
|- X e. A
frege98.y
|- Y e. B
frege98.z
|- Z e. C
frege98.r
|- R e. D
Assertion frege98
|- ( X ( t+ ` R ) Y -> ( Y ( t+ ` R ) Z -> X ( t+ ` R ) Z ) )

Proof

Step Hyp Ref Expression
1 frege98.x
 |-  X e. A
2 frege98.y
 |-  Y e. B
3 frege98.z
 |-  Z e. C
4 frege98.r
 |-  R e. D
5 1 4 frege97
 |-  R hereditary ( ( t+ ` R ) " { X } )
6 fvex
 |-  ( t+ ` R ) e. _V
7 imaexg
 |-  ( ( t+ ` R ) e. _V -> ( ( t+ ` R ) " { X } ) e. _V )
8 6 7 ax-mp
 |-  ( ( t+ ` R ) " { X } ) e. _V
9 2 3 4 8 frege84
 |-  ( R hereditary ( ( t+ ` R ) " { X } ) -> ( Y e. ( ( t+ ` R ) " { X } ) -> ( Y ( t+ ` R ) Z -> Z e. ( ( t+ ` R ) " { X } ) ) ) )
10 5 9 ax-mp
 |-  ( Y e. ( ( t+ ` R ) " { X } ) -> ( Y ( t+ ` R ) Z -> Z e. ( ( t+ ` R ) " { X } ) ) )
11 1 elexi
 |-  X e. _V
12 2 elexi
 |-  Y e. _V
13 11 12 elimasn
 |-  ( Y e. ( ( t+ ` R ) " { X } ) <-> <. X , Y >. e. ( t+ ` R ) )
14 df-br
 |-  ( X ( t+ ` R ) Y <-> <. X , Y >. e. ( t+ ` R ) )
15 13 14 bitr4i
 |-  ( Y e. ( ( t+ ` R ) " { X } ) <-> X ( t+ ` R ) Y )
16 3 elexi
 |-  Z e. _V
17 11 16 elimasn
 |-  ( Z e. ( ( t+ ` R ) " { X } ) <-> <. X , Z >. e. ( t+ ` R ) )
18 df-br
 |-  ( X ( t+ ` R ) Z <-> <. X , Z >. e. ( t+ ` R ) )
19 17 18 bitr4i
 |-  ( Z e. ( ( t+ ` R ) " { X } ) <-> X ( t+ ` R ) Z )
20 19 imbi2i
 |-  ( ( Y ( t+ ` R ) Z -> Z e. ( ( t+ ` R ) " { X } ) ) <-> ( Y ( t+ ` R ) Z -> X ( t+ ` R ) Z ) )
21 10 15 20 3imtr3i
 |-  ( X ( t+ ` R ) Y -> ( Y ( t+ ` R ) Z -> X ( t+ ` R ) Z ) )