Step |
Hyp |
Ref |
Expression |
1 |
|
frege98.x |
⊢ 𝑋 ∈ 𝐴 |
2 |
|
frege98.y |
⊢ 𝑌 ∈ 𝐵 |
3 |
|
frege98.z |
⊢ 𝑍 ∈ 𝐶 |
4 |
|
frege98.r |
⊢ 𝑅 ∈ 𝐷 |
5 |
1 4
|
frege97 |
⊢ 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) |
6 |
|
fvex |
⊢ ( t+ ‘ 𝑅 ) ∈ V |
7 |
|
imaexg |
⊢ ( ( t+ ‘ 𝑅 ) ∈ V → ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V ) |
8 |
6 7
|
ax-mp |
⊢ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V |
9 |
2 3 4 8
|
frege84 |
⊢ ( 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) ) |
10 |
5 9
|
ax-mp |
⊢ ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) |
11 |
1
|
elexi |
⊢ 𝑋 ∈ V |
12 |
2
|
elexi |
⊢ 𝑌 ∈ V |
13 |
11 12
|
elimasn |
⊢ ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑌 〉 ∈ ( t+ ‘ 𝑅 ) ) |
14 |
|
df-br |
⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ ( t+ ‘ 𝑅 ) ) |
15 |
13 14
|
bitr4i |
⊢ ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ) |
16 |
3
|
elexi |
⊢ 𝑍 ∈ V |
17 |
11 16
|
elimasn |
⊢ ( 𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑍 〉 ∈ ( t+ ‘ 𝑅 ) ) |
18 |
|
df-br |
⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ↔ 〈 𝑋 , 𝑍 〉 ∈ ( t+ ‘ 𝑅 ) ) |
19 |
17 18
|
bitr4i |
⊢ ( 𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) |
20 |
19
|
imbi2i |
⊢ ( ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍 → 𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ↔ ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍 → 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) ) |
21 |
10 15 20
|
3imtr3i |
⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍 → 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) ) |