Metamath Proof Explorer


Theorem frege98

Description: If Y follows X and Z follows Y in the R -sequence then Z follows X in the R -sequence because the transitive closure of a relation has the transitive property. Proposition 98 of Frege1879 p. 71. (Contributed by RP, 2-Jul-2020) (Revised by RP, 6-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege98.x 𝑋𝐴
frege98.y 𝑌𝐵
frege98.z 𝑍𝐶
frege98.r 𝑅𝐷
Assertion frege98 ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) )

Proof

Step Hyp Ref Expression
1 frege98.x 𝑋𝐴
2 frege98.y 𝑌𝐵
3 frege98.z 𝑍𝐶
4 frege98.r 𝑅𝐷
5 1 4 frege97 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } )
6 fvex ( t+ ‘ 𝑅 ) ∈ V
7 imaexg ( ( t+ ‘ 𝑅 ) ∈ V → ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V )
8 6 7 ax-mp ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V
9 2 3 4 8 frege84 ( 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) )
10 5 9 ax-mp ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) )
11 1 elexi 𝑋 ∈ V
12 2 elexi 𝑌 ∈ V
13 11 12 elimasn ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( t+ ‘ 𝑅 ) )
14 df-br ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ ( t+ ‘ 𝑅 ) )
15 13 14 bitr4i ( 𝑌 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑌 )
16 3 elexi 𝑍 ∈ V
17 11 16 elimasn ( 𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑍 ⟩ ∈ ( t+ ‘ 𝑅 ) )
18 df-br ( 𝑋 ( t+ ‘ 𝑅 ) 𝑍 ↔ ⟨ 𝑋 , 𝑍 ⟩ ∈ ( t+ ‘ 𝑅 ) )
19 17 18 bitr4i ( 𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 𝑋 ( t+ ‘ 𝑅 ) 𝑍 )
20 19 imbi2i ( ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍𝑍 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ↔ ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) )
21 10 15 20 3imtr3i ( 𝑋 ( t+ ‘ 𝑅 ) 𝑌 → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑍𝑋 ( t+ ‘ 𝑅 ) 𝑍 ) )