Description: The property of following X in the R -sequence is hereditary in the R -sequence. Proposition 97 of Frege1879 p. 71.
Here we introduce the image of a singleton under a relation as class which stands for the property of following X in the R -sequence. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frege97.x | ⊢ 𝑋 ∈ 𝑈 | |
| frege97.r | ⊢ 𝑅 ∈ 𝑊 | ||
| Assertion | frege97 | ⊢ 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege97.x | ⊢ 𝑋 ∈ 𝑈 | |
| 2 | frege97.r | ⊢ 𝑅 ∈ 𝑊 | |
| 3 | frege75 | ⊢ ( ∀ 𝑏 ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) → 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) | |
| 4 | vex | ⊢ 𝑏 ∈ V | |
| 5 | vex | ⊢ 𝑎 ∈ V | |
| 6 | 1 4 5 2 | frege96 | ⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑏 → ( 𝑏 𝑅 𝑎 → 𝑋 ( t+ ‘ 𝑅 ) 𝑎 ) ) |
| 7 | df-br | ⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑏 ↔ 〈 𝑋 , 𝑏 〉 ∈ ( t+ ‘ 𝑅 ) ) | |
| 8 | 1 | elexi | ⊢ 𝑋 ∈ V |
| 9 | 8 4 | elimasn | ⊢ ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑏 〉 ∈ ( t+ ‘ 𝑅 ) ) |
| 10 | 7 9 | bitr4i | ⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑏 ↔ 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) |
| 11 | df-br | ⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑎 ↔ 〈 𝑋 , 𝑎 〉 ∈ ( t+ ‘ 𝑅 ) ) | |
| 12 | 8 5 | elimasn | ⊢ ( 𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑎 〉 ∈ ( t+ ‘ 𝑅 ) ) |
| 13 | 11 12 | bitr4i | ⊢ ( 𝑋 ( t+ ‘ 𝑅 ) 𝑎 ↔ 𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) |
| 14 | 13 | imbi2i | ⊢ ( ( 𝑏 𝑅 𝑎 → 𝑋 ( t+ ‘ 𝑅 ) 𝑎 ) ↔ ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) |
| 15 | 6 10 14 | 3imtr3i | ⊢ ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) |
| 16 | 15 | alrimiv | ⊢ ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎 → 𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) |
| 17 | 3 16 | mpg | ⊢ 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) |