Metamath Proof Explorer


Theorem frege97

Description: The property of following X in the R -sequence is hereditary in the R -sequence. Proposition 97 of Frege1879 p. 71.

Here we introduce the image of a singleton under a relation as class which stands for the property of following X in the R -sequence. (Contributed by RP, 2-Jul-2020) (Revised by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege97.x 𝑋𝑈
frege97.r 𝑅𝑊
Assertion frege97 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } )

Proof

Step Hyp Ref Expression
1 frege97.x 𝑋𝑈
2 frege97.r 𝑅𝑊
3 frege75 ( ∀ 𝑏 ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) ) → 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) )
4 vex 𝑏 ∈ V
5 vex 𝑎 ∈ V
6 1 4 5 2 frege96 ( 𝑋 ( t+ ‘ 𝑅 ) 𝑏 → ( 𝑏 𝑅 𝑎𝑋 ( t+ ‘ 𝑅 ) 𝑎 ) )
7 df-br ( 𝑋 ( t+ ‘ 𝑅 ) 𝑏 ↔ ⟨ 𝑋 , 𝑏 ⟩ ∈ ( t+ ‘ 𝑅 ) )
8 1 elexi 𝑋 ∈ V
9 8 4 elimasn ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑏 ⟩ ∈ ( t+ ‘ 𝑅 ) )
10 7 9 bitr4i ( 𝑋 ( t+ ‘ 𝑅 ) 𝑏𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) )
11 df-br ( 𝑋 ( t+ ‘ 𝑅 ) 𝑎 ↔ ⟨ 𝑋 , 𝑎 ⟩ ∈ ( t+ ‘ 𝑅 ) )
12 8 5 elimasn ( 𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑎 ⟩ ∈ ( t+ ‘ 𝑅 ) )
13 11 12 bitr4i ( 𝑋 ( t+ ‘ 𝑅 ) 𝑎𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) )
14 13 imbi2i ( ( 𝑏 𝑅 𝑎𝑋 ( t+ ‘ 𝑅 ) 𝑎 ) ↔ ( 𝑏 𝑅 𝑎𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) )
15 6 10 14 3imtr3i ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ( 𝑏 𝑅 𝑎𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) )
16 15 alrimiv ( 𝑏 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) → ∀ 𝑎 ( 𝑏 𝑅 𝑎𝑎 ∈ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ) )
17 3 16 mpg 𝑅 hereditary ( ( t+ ‘ 𝑅 ) “ { 𝑋 } )