Metamath Proof Explorer


Theorem frege75

Description: If from the proposition that x has property A , whatever x may be, it can be inferred that every result of an application of the procedure R to x has property A , then property A is hereditary in the R -sequence. Proposition 75 of Frege1879 p. 60. (Contributed by RP, 28-Mar-2020) (Proof modification is discouraged.)

Ref Expression
Assertion frege75
|- ( A. x ( x e. A -> A. y ( x R y -> y e. A ) ) -> R hereditary A )

Proof

Step Hyp Ref Expression
1 dffrege69
 |-  ( A. x ( x e. A -> A. y ( x R y -> y e. A ) ) <-> R hereditary A )
2 frege52aid
 |-  ( ( A. x ( x e. A -> A. y ( x R y -> y e. A ) ) <-> R hereditary A ) -> ( A. x ( x e. A -> A. y ( x R y -> y e. A ) ) -> R hereditary A ) )
3 1 2 ax-mp
 |-  ( A. x ( x e. A -> A. y ( x R y -> y e. A ) ) -> R hereditary A )