Metamath Proof Explorer


Theorem dffrege69

Description: If from the proposition that x has property A it can be inferred generally, whatever x may be, that every result of an application of the procedure R to x has property A , then we say " Property A is hereditary in the R -sequence. Definition 69 of Frege1879 p. 55. (Contributed by RP, 28-Mar-2020)

Ref Expression
Assertion dffrege69
|- ( A. x ( x e. A -> A. y ( x R y -> y e. A ) ) <-> R hereditary A )

Proof

Step Hyp Ref Expression
1 dfhe3
 |-  ( R hereditary A <-> A. x ( x e. A -> A. y ( x R y -> y e. A ) ) )
2 1 bicomi
 |-  ( A. x ( x e. A -> A. y ( x R y -> y e. A ) ) <-> R hereditary A )