Metamath Proof Explorer


Theorem frege63b

Description: Lemma for frege91 . Proposition 63 of Frege1879 p. 52. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege63b ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜓 → ( ∀ 𝑥 ( 𝜑𝜒 ) → [ 𝑦 / 𝑥 ] 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 frege62b ( [ 𝑦 / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑𝜒 ) → [ 𝑦 / 𝑥 ] 𝜒 ) )
2 frege24 ( ( [ 𝑦 / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( 𝜑𝜒 ) → [ 𝑦 / 𝑥 ] 𝜒 ) ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜓 → ( ∀ 𝑥 ( 𝜑𝜒 ) → [ 𝑦 / 𝑥 ] 𝜒 ) ) ) )
3 1 2 ax-mp ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜓 → ( ∀ 𝑥 ( 𝜑𝜒 ) → [ 𝑦 / 𝑥 ] 𝜒 ) ) )