Description: Combination of applying a definition and applying it to a specific instance. Proposition 68 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frege68b | |- ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege57aid | |- ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) |
|
| 2 | frege67b | |- ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) |