Metamath Proof Explorer


Theorem frege67b

Description: Lemma for frege68b . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege67b
|- ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege58b
 |-  ( A. x ph -> [ y / x ] ph )
2 frege7
 |-  ( ( A. x ph -> [ y / x ] ph ) -> ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) )