Description: Lemma for frege68b . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege67b | |- ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58b | |- ( A. x ph -> [ y / x ] ph ) |
|
2 | frege7 | |- ( ( A. x ph -> [ y / x ] ph ) -> ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( ( A. x ph <-> ps ) -> ( ps -> A. x ph ) ) -> ( ( A. x ph <-> ps ) -> ( ps -> [ y / x ] ph ) ) ) |