Metamath Proof Explorer


Theorem frege67b

Description: Lemma for frege68b . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege67b ( ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege58b ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 )
2 frege7 ( ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) → ( ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) )
3 1 2 ax-mp ( ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑𝜓 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) )