Description: Lemma for frege68b . Proposition 67 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege67b | ⊢ ( ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58b | ⊢ ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) | |
2 | frege7 | ⊢ ( ( ∀ 𝑥 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) → ( ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜑 ) ) → ( ( ∀ 𝑥 𝜑 ↔ 𝜓 ) → ( 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |