Metamath Proof Explorer


Theorem frgr2wwlkn0

Description: In a friendship graph, there is always a path/walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 12-May-2021)

Ref Expression
Hypothesis frgr2wwlkeu.v
|- V = ( Vtx ` G )
Assertion frgr2wwlkn0
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) )

Proof

Step Hyp Ref Expression
1 frgr2wwlkeu.v
 |-  V = ( Vtx ` G )
2 1 frgr2wwlkeu
 |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> E! c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) )
3 reurex
 |-  ( E! c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> E. c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) )
4 ne0i
 |-  ( <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) )
5 4 rexlimivw
 |-  ( E. c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) )
6 2 3 5 3syl
 |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) )