| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgr2wwlkeu.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | frgr2wwlkeu |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> E! c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) | 
						
							| 3 |  | reurex |  |-  ( E! c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> E. c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) | 
						
							| 4 |  | ne0i |  |-  ( <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) | 
						
							| 5 | 4 | rexlimivw |  |-  ( E. c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) | 
						
							| 6 | 2 3 5 | 3syl |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) |