| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgr2wwlkeu.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | frgr2wwlkn0 |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) | 
						
							| 3 | 1 | elwwlks2ons3 |  |-  ( w e. ( A ( 2 WWalksNOn G ) B ) <-> E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 4 | 1 | elwwlks2ons3 |  |-  ( t e. ( A ( 2 WWalksNOn G ) B ) <-> E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 5 | 3 4 | anbi12i |  |-  ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) <-> ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) ) | 
						
							| 6 | 1 | frgr2wwlkeu |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) | 
						
							| 7 |  | s3eq2 |  |-  ( x = y -> <" A x B "> = <" A y B "> ) | 
						
							| 8 | 7 | eleq1d |  |-  ( x = y -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 9 | 8 | reu4 |  |-  ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( E. x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) ) ) | 
						
							| 10 |  | s3eq2 |  |-  ( x = d -> <" A x B "> = <" A d B "> ) | 
						
							| 11 | 10 | eleq1d |  |-  ( x = d -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 12 | 11 | anbi1d |  |-  ( x = d -> ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) <-> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) ) | 
						
							| 13 |  | equequ1 |  |-  ( x = d -> ( x = y <-> d = y ) ) | 
						
							| 14 | 12 13 | imbi12d |  |-  ( x = d -> ( ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) <-> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = y ) ) ) | 
						
							| 15 |  | s3eq2 |  |-  ( y = c -> <" A y B "> = <" A c B "> ) | 
						
							| 16 | 15 | eleq1d |  |-  ( y = c -> ( <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 17 | 16 | anbi2d |  |-  ( y = c -> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) <-> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) ) | 
						
							| 18 |  | equequ2 |  |-  ( y = c -> ( d = y <-> d = c ) ) | 
						
							| 19 | 17 18 | imbi12d |  |-  ( y = c -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = y ) <-> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) ) | 
						
							| 20 | 14 19 | rspc2va |  |-  ( ( ( d e. V /\ c e. V ) /\ A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) ) -> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) | 
						
							| 21 |  | pm3.35 |  |-  ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) -> d = c ) | 
						
							| 22 |  | s3eq2 |  |-  ( c = d -> <" A c B "> = <" A d B "> ) | 
						
							| 23 | 22 | equcoms |  |-  ( d = c -> <" A c B "> = <" A d B "> ) | 
						
							| 24 | 23 | adantr |  |-  ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> <" A c B "> = <" A d B "> ) | 
						
							| 25 |  | eqeq12 |  |-  ( ( t = <" A c B "> /\ w = <" A d B "> ) -> ( t = w <-> <" A c B "> = <" A d B "> ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> ( t = w <-> <" A c B "> = <" A d B "> ) ) | 
						
							| 27 | 24 26 | mpbird |  |-  ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> t = w ) | 
						
							| 28 | 27 | equcomd |  |-  ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> w = t ) | 
						
							| 29 | 28 | ex |  |-  ( d = c -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> w = t ) ) | 
						
							| 30 | 21 29 | syl |  |-  ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> w = t ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> w = t ) ) ) | 
						
							| 32 | 31 | com23 |  |-  ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) | 
						
							| 33 | 32 | exp4b |  |-  ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( t = <" A c B "> -> ( w = <" A d B "> -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) ) | 
						
							| 34 | 33 | com13 |  |-  ( t = <" A c B "> -> ( <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( w = <" A d B "> -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( w = <" A d B "> -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) | 
						
							| 36 | 35 | com13 |  |-  ( w = <" A d B "> -> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) | 
						
							| 38 | 37 | com13 |  |-  ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) | 
						
							| 39 | 20 38 | syl |  |-  ( ( ( d e. V /\ c e. V ) /\ A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) | 
						
							| 40 | 39 | expcom |  |-  ( A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) -> ( ( d e. V /\ c e. V ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) ) | 
						
							| 41 | 9 40 | simplbiim |  |-  ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( d e. V /\ c e. V ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) ) | 
						
							| 42 | 41 | impl |  |-  ( ( ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ d e. V ) /\ c e. V ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) | 
						
							| 43 | 42 | rexlimdva |  |-  ( ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ d e. V ) -> ( E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) | 
						
							| 44 | 43 | com23 |  |-  ( ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ d e. V ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) | 
						
							| 45 | 44 | rexlimdva |  |-  ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) | 
						
							| 46 | 45 | impd |  |-  ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) -> w = t ) ) | 
						
							| 47 | 6 46 | syl |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) -> w = t ) ) | 
						
							| 48 | 5 47 | biimtrid |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) | 
						
							| 49 | 48 | alrimivv |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> A. w A. t ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) | 
						
							| 50 |  | eqeuel |  |-  ( ( ( A ( 2 WWalksNOn G ) B ) =/= (/) /\ A. w A. t ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) -> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) | 
						
							| 51 | 2 49 50 | syl2anc |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) | 
						
							| 52 |  | ovex |  |-  ( A ( 2 WWalksNOn G ) B ) e. _V | 
						
							| 53 |  | euhash1 |  |-  ( ( A ( 2 WWalksNOn G ) B ) e. _V -> ( ( # ` ( A ( 2 WWalksNOn G ) B ) ) = 1 <-> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 54 | 52 53 | mp1i |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( ( # ` ( A ( 2 WWalksNOn G ) B ) ) = 1 <-> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) ) | 
						
							| 55 | 51 54 | mpbird |  |-  ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( # ` ( A ( 2 WWalksNOn G ) B ) ) = 1 ) |