| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumfldivdiag.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fsumfldivdiag.2 |  |-  ( ( ph /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) -> B e. CC ) | 
						
							| 3 |  | fzfid |  |-  ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) | 
						
							| 4 |  | fzfid |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` ( A / n ) ) ) e. Fin ) | 
						
							| 5 | 1 | fsumfldivdiaglem |  |-  ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) -> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) | 
						
							| 6 | 1 | fsumfldivdiaglem |  |-  ( ph -> ( ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) -> ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) ) ) | 
						
							| 7 | 5 6 | impbid |  |-  ( ph -> ( ( n e. ( 1 ... ( |_ ` A ) ) /\ m e. ( 1 ... ( |_ ` ( A / n ) ) ) ) <-> ( m e. ( 1 ... ( |_ ` A ) ) /\ n e. ( 1 ... ( |_ ` ( A / m ) ) ) ) ) ) | 
						
							| 8 | 3 3 4 7 2 | fsumcom2 |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` A ) ) sum_ m e. ( 1 ... ( |_ ` ( A / n ) ) ) B = sum_ m e. ( 1 ... ( |_ ` A ) ) sum_ n e. ( 1 ... ( |_ ` ( A / m ) ) ) B ) |