Metamath Proof Explorer


Theorem musum

Description: The sum of the Möbius function over the divisors of N gives one if N = 1 , but otherwise always sums to zero. Theorem 2.1 in ApostolNT p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv . (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion musum
|- ( N e. NN -> sum_ k e. { n e. NN | n || N } ( mmu ` k ) = if ( N = 1 , 1 , 0 ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( n = k -> ( mmu ` n ) = ( mmu ` k ) )
2 1 neeq1d
 |-  ( n = k -> ( ( mmu ` n ) =/= 0 <-> ( mmu ` k ) =/= 0 ) )
3 breq1
 |-  ( n = k -> ( n || N <-> k || N ) )
4 2 3 anbi12d
 |-  ( n = k -> ( ( ( mmu ` n ) =/= 0 /\ n || N ) <-> ( ( mmu ` k ) =/= 0 /\ k || N ) ) )
5 4 elrab
 |-  ( k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } <-> ( k e. NN /\ ( ( mmu ` k ) =/= 0 /\ k || N ) ) )
6 muval2
 |-  ( ( k e. NN /\ ( mmu ` k ) =/= 0 ) -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) )
7 6 adantrr
 |-  ( ( k e. NN /\ ( ( mmu ` k ) =/= 0 /\ k || N ) ) -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) )
8 5 7 sylbi
 |-  ( k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) )
9 8 adantl
 |-  ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) )
10 9 sumeq2dv
 |-  ( N e. NN -> sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( mmu ` k ) = sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) )
11 simpr
 |-  ( ( ( mmu ` n ) =/= 0 /\ n || N ) -> n || N )
12 11 a1i
 |-  ( ( N e. NN /\ n e. NN ) -> ( ( ( mmu ` n ) =/= 0 /\ n || N ) -> n || N ) )
13 12 ss2rabdv
 |-  ( N e. NN -> { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } C_ { n e. NN | n || N } )
14 ssrab2
 |-  { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } C_ NN
15 simpr
 |-  ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } )
16 14 15 sselid
 |-  ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> k e. NN )
17 mucl
 |-  ( k e. NN -> ( mmu ` k ) e. ZZ )
18 16 17 syl
 |-  ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) e. ZZ )
19 18 zcnd
 |-  ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) e. CC )
20 difrab
 |-  ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) = { n e. NN | ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) }
21 pm3.21
 |-  ( n || N -> ( ( mmu ` n ) =/= 0 -> ( ( mmu ` n ) =/= 0 /\ n || N ) ) )
22 21 necon1bd
 |-  ( n || N -> ( -. ( ( mmu ` n ) =/= 0 /\ n || N ) -> ( mmu ` n ) = 0 ) )
23 22 imp
 |-  ( ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) -> ( mmu ` n ) = 0 )
24 23 a1i
 |-  ( n e. NN -> ( ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) -> ( mmu ` n ) = 0 ) )
25 24 ss2rabi
 |-  { n e. NN | ( n || N /\ -. ( ( mmu ` n ) =/= 0 /\ n || N ) ) } C_ { n e. NN | ( mmu ` n ) = 0 }
26 20 25 eqsstri
 |-  ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) C_ { n e. NN | ( mmu ` n ) = 0 }
27 26 sseli
 |-  ( k e. ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> k e. { n e. NN | ( mmu ` n ) = 0 } )
28 fveqeq2
 |-  ( n = k -> ( ( mmu ` n ) = 0 <-> ( mmu ` k ) = 0 ) )
29 28 elrab
 |-  ( k e. { n e. NN | ( mmu ` n ) = 0 } <-> ( k e. NN /\ ( mmu ` k ) = 0 ) )
30 29 simprbi
 |-  ( k e. { n e. NN | ( mmu ` n ) = 0 } -> ( mmu ` k ) = 0 )
31 27 30 syl
 |-  ( k e. ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( mmu ` k ) = 0 )
32 31 adantl
 |-  ( ( N e. NN /\ k e. ( { n e. NN | n || N } \ { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) ) -> ( mmu ` k ) = 0 )
33 dvdsfi
 |-  ( N e. NN -> { n e. NN | n || N } e. Fin )
34 13 19 32 33 fsumss
 |-  ( N e. NN -> sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( mmu ` k ) = sum_ k e. { n e. NN | n || N } ( mmu ` k ) )
35 fveq2
 |-  ( x = { p e. Prime | p || k } -> ( # ` x ) = ( # ` { p e. Prime | p || k } ) )
36 35 oveq2d
 |-  ( x = { p e. Prime | p || k } -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) )
37 33 13 ssfid
 |-  ( N e. NN -> { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } e. Fin )
38 eqid
 |-  { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } = { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) }
39 eqid
 |-  ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) = ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } )
40 oveq1
 |-  ( q = p -> ( q pCnt x ) = ( p pCnt x ) )
41 40 cbvmptv
 |-  ( q e. Prime |-> ( q pCnt x ) ) = ( p e. Prime |-> ( p pCnt x ) )
42 oveq2
 |-  ( x = m -> ( p pCnt x ) = ( p pCnt m ) )
43 42 mpteq2dv
 |-  ( x = m -> ( p e. Prime |-> ( p pCnt x ) ) = ( p e. Prime |-> ( p pCnt m ) ) )
44 41 43 eqtrid
 |-  ( x = m -> ( q e. Prime |-> ( q pCnt x ) ) = ( p e. Prime |-> ( p pCnt m ) ) )
45 44 cbvmptv
 |-  ( x e. NN |-> ( q e. Prime |-> ( q pCnt x ) ) ) = ( m e. NN |-> ( p e. Prime |-> ( p pCnt m ) ) )
46 38 39 45 sqff1o
 |-  ( N e. NN -> ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) : { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } -1-1-onto-> ~P { p e. Prime | p || N } )
47 breq2
 |-  ( m = k -> ( p || m <-> p || k ) )
48 47 rabbidv
 |-  ( m = k -> { p e. Prime | p || m } = { p e. Prime | p || k } )
49 prmex
 |-  Prime e. _V
50 49 rabex
 |-  { p e. Prime | p || k } e. _V
51 48 39 50 fvmpt
 |-  ( k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } -> ( ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) ` k ) = { p e. Prime | p || k } )
52 51 adantl
 |-  ( ( N e. NN /\ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ) -> ( ( m e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } |-> { p e. Prime | p || m } ) ` k ) = { p e. Prime | p || k } )
53 neg1cn
 |-  -u 1 e. CC
54 prmdvdsfi
 |-  ( N e. NN -> { p e. Prime | p || N } e. Fin )
55 elpwi
 |-  ( x e. ~P { p e. Prime | p || N } -> x C_ { p e. Prime | p || N } )
56 ssfi
 |-  ( ( { p e. Prime | p || N } e. Fin /\ x C_ { p e. Prime | p || N } ) -> x e. Fin )
57 54 55 56 syl2an
 |-  ( ( N e. NN /\ x e. ~P { p e. Prime | p || N } ) -> x e. Fin )
58 hashcl
 |-  ( x e. Fin -> ( # ` x ) e. NN0 )
59 57 58 syl
 |-  ( ( N e. NN /\ x e. ~P { p e. Prime | p || N } ) -> ( # ` x ) e. NN0 )
60 expcl
 |-  ( ( -u 1 e. CC /\ ( # ` x ) e. NN0 ) -> ( -u 1 ^ ( # ` x ) ) e. CC )
61 53 59 60 sylancr
 |-  ( ( N e. NN /\ x e. ~P { p e. Prime | p || N } ) -> ( -u 1 ^ ( # ` x ) ) e. CC )
62 36 37 46 52 61 fsumf1o
 |-  ( N e. NN -> sum_ x e. ~P { p e. Prime | p || N } ( -u 1 ^ ( # ` x ) ) = sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) )
63 fzfid
 |-  ( N e. NN -> ( 0 ... ( # ` { p e. Prime | p || N } ) ) e. Fin )
64 54 adantr
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> { p e. Prime | p || N } e. Fin )
65 pwfi
 |-  ( { p e. Prime | p || N } e. Fin <-> ~P { p e. Prime | p || N } e. Fin )
66 64 65 sylib
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ~P { p e. Prime | p || N } e. Fin )
67 ssrab2
 |-  { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } C_ ~P { p e. Prime | p || N }
68 ssfi
 |-  ( ( ~P { p e. Prime | p || N } e. Fin /\ { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } C_ ~P { p e. Prime | p || N } ) -> { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } e. Fin )
69 66 67 68 sylancl
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } e. Fin )
70 simprr
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } )
71 fveqeq2
 |-  ( s = x -> ( ( # ` s ) = z <-> ( # ` x ) = z ) )
72 71 elrab
 |-  ( x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } <-> ( x e. ~P { p e. Prime | p || N } /\ ( # ` x ) = z ) )
73 72 simprbi
 |-  ( x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } -> ( # ` x ) = z )
74 70 73 syl
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> ( # ` x ) = z )
75 74 ralrimivva
 |-  ( N e. NN -> A. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) A. x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( # ` x ) = z )
76 invdisj
 |-  ( A. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) A. x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( # ` x ) = z -> Disj_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } )
77 75 76 syl
 |-  ( N e. NN -> Disj_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } )
78 54 adantr
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> { p e. Prime | p || N } e. Fin )
79 67 70 sselid
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x e. ~P { p e. Prime | p || N } )
80 79 55 syl
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x C_ { p e. Prime | p || N } )
81 78 80 ssfid
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> x e. Fin )
82 81 58 syl
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> ( # ` x ) e. NN0 )
83 53 82 60 sylancr
 |-  ( ( N e. NN /\ ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) ) -> ( -u 1 ^ ( # ` x ) ) e. CC )
84 63 69 77 83 fsumiun
 |-  ( N e. NN -> sum_ x e. U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) )
85 iunrab
 |-  U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } = { s e. ~P { p e. Prime | p || N } | E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z }
86 54 adantr
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> { p e. Prime | p || N } e. Fin )
87 elpwi
 |-  ( s e. ~P { p e. Prime | p || N } -> s C_ { p e. Prime | p || N } )
88 87 adantl
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> s C_ { p e. Prime | p || N } )
89 ssdomg
 |-  ( { p e. Prime | p || N } e. Fin -> ( s C_ { p e. Prime | p || N } -> s ~<_ { p e. Prime | p || N } ) )
90 86 88 89 sylc
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> s ~<_ { p e. Prime | p || N } )
91 ssfi
 |-  ( ( { p e. Prime | p || N } e. Fin /\ s C_ { p e. Prime | p || N } ) -> s e. Fin )
92 54 87 91 syl2an
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> s e. Fin )
93 hashdom
 |-  ( ( s e. Fin /\ { p e. Prime | p || N } e. Fin ) -> ( ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) <-> s ~<_ { p e. Prime | p || N } ) )
94 92 86 93 syl2anc
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) <-> s ~<_ { p e. Prime | p || N } ) )
95 90 94 mpbird
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) )
96 hashcl
 |-  ( s e. Fin -> ( # ` s ) e. NN0 )
97 92 96 syl
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) e. NN0 )
98 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
99 97 98 eleqtrdi
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) e. ( ZZ>= ` 0 ) )
100 hashcl
 |-  ( { p e. Prime | p || N } e. Fin -> ( # ` { p e. Prime | p || N } ) e. NN0 )
101 54 100 syl
 |-  ( N e. NN -> ( # ` { p e. Prime | p || N } ) e. NN0 )
102 101 adantr
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` { p e. Prime | p || N } ) e. NN0 )
103 102 nn0zd
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` { p e. Prime | p || N } ) e. ZZ )
104 elfz5
 |-  ( ( ( # ` s ) e. ( ZZ>= ` 0 ) /\ ( # ` { p e. Prime | p || N } ) e. ZZ ) -> ( ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) <-> ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) ) )
105 99 103 104 syl2anc
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) <-> ( # ` s ) <_ ( # ` { p e. Prime | p || N } ) ) )
106 95 105 mpbird
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) )
107 eqidd
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> ( # ` s ) = ( # ` s ) )
108 eqeq2
 |-  ( z = ( # ` s ) -> ( ( # ` s ) = z <-> ( # ` s ) = ( # ` s ) ) )
109 108 rspcev
 |-  ( ( ( # ` s ) e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) /\ ( # ` s ) = ( # ` s ) ) -> E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z )
110 106 107 109 syl2anc
 |-  ( ( N e. NN /\ s e. ~P { p e. Prime | p || N } ) -> E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z )
111 110 ralrimiva
 |-  ( N e. NN -> A. s e. ~P { p e. Prime | p || N } E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z )
112 rabid2
 |-  ( ~P { p e. Prime | p || N } = { s e. ~P { p e. Prime | p || N } | E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z } <-> A. s e. ~P { p e. Prime | p || N } E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z )
113 111 112 sylibr
 |-  ( N e. NN -> ~P { p e. Prime | p || N } = { s e. ~P { p e. Prime | p || N } | E. z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( # ` s ) = z } )
114 85 113 eqtr4id
 |-  ( N e. NN -> U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } = ~P { p e. Prime | p || N } )
115 114 sumeq1d
 |-  ( N e. NN -> sum_ x e. U_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ x e. ~P { p e. Prime | p || N } ( -u 1 ^ ( # ` x ) ) )
116 elfznn0
 |-  ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) -> z e. NN0 )
117 116 adantl
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> z e. NN0 )
118 expcl
 |-  ( ( -u 1 e. CC /\ z e. NN0 ) -> ( -u 1 ^ z ) e. CC )
119 53 117 118 sylancr
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ( -u 1 ^ z ) e. CC )
120 fsumconst
 |-  ( ( { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } e. Fin /\ ( -u 1 ^ z ) e. CC ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ z ) = ( ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) x. ( -u 1 ^ z ) ) )
121 69 119 120 syl2anc
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ z ) = ( ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) x. ( -u 1 ^ z ) ) )
122 73 adantl
 |-  ( ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) -> ( # ` x ) = z )
123 122 oveq2d
 |-  ( ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) /\ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ z ) )
124 123 sumeq2dv
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ z ) )
125 elfzelz
 |-  ( z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) -> z e. ZZ )
126 hashbc
 |-  ( ( { p e. Prime | p || N } e. Fin /\ z e. ZZ ) -> ( ( # ` { p e. Prime | p || N } ) _C z ) = ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) )
127 54 125 126 syl2an
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ( ( # ` { p e. Prime | p || N } ) _C z ) = ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) )
128 127 oveq1d
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) = ( ( # ` { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ) x. ( -u 1 ^ z ) ) )
129 121 124 128 3eqtr4d
 |-  ( ( N e. NN /\ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ) -> sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) )
130 129 sumeq2dv
 |-  ( N e. NN -> sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) )
131 1pneg1e0
 |-  ( 1 + -u 1 ) = 0
132 131 oveq1i
 |-  ( ( 1 + -u 1 ) ^ ( # ` { p e. Prime | p || N } ) ) = ( 0 ^ ( # ` { p e. Prime | p || N } ) )
133 binom1p
 |-  ( ( -u 1 e. CC /\ ( # ` { p e. Prime | p || N } ) e. NN0 ) -> ( ( 1 + -u 1 ) ^ ( # ` { p e. Prime | p || N } ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) )
134 53 101 133 sylancr
 |-  ( N e. NN -> ( ( 1 + -u 1 ) ^ ( # ` { p e. Prime | p || N } ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) )
135 132 134 eqtr3id
 |-  ( N e. NN -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) ( ( ( # ` { p e. Prime | p || N } ) _C z ) x. ( -u 1 ^ z ) ) )
136 eqeq2
 |-  ( 1 = if ( N = 1 , 1 , 0 ) -> ( ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 1 <-> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = if ( N = 1 , 1 , 0 ) ) )
137 eqeq2
 |-  ( 0 = if ( N = 1 , 1 , 0 ) -> ( ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 0 <-> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = if ( N = 1 , 1 , 0 ) ) )
138 nprmdvds1
 |-  ( p e. Prime -> -. p || 1 )
139 simpr
 |-  ( ( N e. NN /\ N = 1 ) -> N = 1 )
140 139 breq2d
 |-  ( ( N e. NN /\ N = 1 ) -> ( p || N <-> p || 1 ) )
141 140 notbid
 |-  ( ( N e. NN /\ N = 1 ) -> ( -. p || N <-> -. p || 1 ) )
142 138 141 imbitrrid
 |-  ( ( N e. NN /\ N = 1 ) -> ( p e. Prime -> -. p || N ) )
143 142 ralrimiv
 |-  ( ( N e. NN /\ N = 1 ) -> A. p e. Prime -. p || N )
144 rabeq0
 |-  ( { p e. Prime | p || N } = (/) <-> A. p e. Prime -. p || N )
145 143 144 sylibr
 |-  ( ( N e. NN /\ N = 1 ) -> { p e. Prime | p || N } = (/) )
146 145 fveq2d
 |-  ( ( N e. NN /\ N = 1 ) -> ( # ` { p e. Prime | p || N } ) = ( # ` (/) ) )
147 hash0
 |-  ( # ` (/) ) = 0
148 146 147 eqtrdi
 |-  ( ( N e. NN /\ N = 1 ) -> ( # ` { p e. Prime | p || N } ) = 0 )
149 148 oveq2d
 |-  ( ( N e. NN /\ N = 1 ) -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = ( 0 ^ 0 ) )
150 0exp0e1
 |-  ( 0 ^ 0 ) = 1
151 149 150 eqtrdi
 |-  ( ( N e. NN /\ N = 1 ) -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 1 )
152 df-ne
 |-  ( N =/= 1 <-> -. N = 1 )
153 eluz2b3
 |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) )
154 153 biimpri
 |-  ( ( N e. NN /\ N =/= 1 ) -> N e. ( ZZ>= ` 2 ) )
155 152 154 sylan2br
 |-  ( ( N e. NN /\ -. N = 1 ) -> N e. ( ZZ>= ` 2 ) )
156 exprmfct
 |-  ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N )
157 155 156 syl
 |-  ( ( N e. NN /\ -. N = 1 ) -> E. p e. Prime p || N )
158 rabn0
 |-  ( { p e. Prime | p || N } =/= (/) <-> E. p e. Prime p || N )
159 157 158 sylibr
 |-  ( ( N e. NN /\ -. N = 1 ) -> { p e. Prime | p || N } =/= (/) )
160 54 adantr
 |-  ( ( N e. NN /\ -. N = 1 ) -> { p e. Prime | p || N } e. Fin )
161 hashnncl
 |-  ( { p e. Prime | p || N } e. Fin -> ( ( # ` { p e. Prime | p || N } ) e. NN <-> { p e. Prime | p || N } =/= (/) ) )
162 160 161 syl
 |-  ( ( N e. NN /\ -. N = 1 ) -> ( ( # ` { p e. Prime | p || N } ) e. NN <-> { p e. Prime | p || N } =/= (/) ) )
163 159 162 mpbird
 |-  ( ( N e. NN /\ -. N = 1 ) -> ( # ` { p e. Prime | p || N } ) e. NN )
164 163 0expd
 |-  ( ( N e. NN /\ -. N = 1 ) -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = 0 )
165 136 137 151 164 ifbothda
 |-  ( N e. NN -> ( 0 ^ ( # ` { p e. Prime | p || N } ) ) = if ( N = 1 , 1 , 0 ) )
166 130 135 165 3eqtr2d
 |-  ( N e. NN -> sum_ z e. ( 0 ... ( # ` { p e. Prime | p || N } ) ) sum_ x e. { s e. ~P { p e. Prime | p || N } | ( # ` s ) = z } ( -u 1 ^ ( # ` x ) ) = if ( N = 1 , 1 , 0 ) )
167 84 115 166 3eqtr3d
 |-  ( N e. NN -> sum_ x e. ~P { p e. Prime | p || N } ( -u 1 ^ ( # ` x ) ) = if ( N = 1 , 1 , 0 ) )
168 62 167 eqtr3d
 |-  ( N e. NN -> sum_ k e. { n e. NN | ( ( mmu ` n ) =/= 0 /\ n || N ) } ( -u 1 ^ ( # ` { p e. Prime | p || k } ) ) = if ( N = 1 , 1 , 0 ) )
169 10 34 168 3eqtr3d
 |-  ( N e. NN -> sum_ k e. { n e. NN | n || N } ( mmu ` k ) = if ( N = 1 , 1 , 0 ) )