Metamath Proof Explorer


Theorem musum

Description: The sum of the Möbius function over the divisors of N gives one if N = 1 , but otherwise always sums to zero. Theorem 2.1 in ApostolNT p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv . (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion musum ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ( μ ‘ 𝑘 ) = if ( 𝑁 = 1 , 1 , 0 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑛 = 𝑘 → ( μ ‘ 𝑛 ) = ( μ ‘ 𝑘 ) )
2 1 neeq1d ( 𝑛 = 𝑘 → ( ( μ ‘ 𝑛 ) ≠ 0 ↔ ( μ ‘ 𝑘 ) ≠ 0 ) )
3 breq1 ( 𝑛 = 𝑘 → ( 𝑛𝑁𝑘𝑁 ) )
4 2 3 anbi12d ( 𝑛 = 𝑘 → ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) ↔ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘𝑁 ) ) )
5 4 elrab ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ↔ ( 𝑘 ∈ ℕ ∧ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘𝑁 ) ) )
6 muval2 ( ( 𝑘 ∈ ℕ ∧ ( μ ‘ 𝑘 ) ≠ 0 ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) )
7 6 adantrr ( ( 𝑘 ∈ ℕ ∧ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘𝑁 ) ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) )
8 5 7 sylbi ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) )
9 8 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) )
10 9 sumeq2dv ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ( μ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) )
11 simpr ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) → 𝑛𝑁 )
12 11 a1i ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) → 𝑛𝑁 ) )
13 12 ss2rabdv ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } )
14 ssrab2 { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ⊆ ℕ
15 simpr ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } )
16 14 15 sselid ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → 𝑘 ∈ ℕ )
17 mucl ( 𝑘 ∈ ℕ → ( μ ‘ 𝑘 ) ∈ ℤ )
18 16 17 syl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → ( μ ‘ 𝑘 ) ∈ ℤ )
19 18 zcnd ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → ( μ ‘ 𝑘 ) ∈ ℂ )
20 difrab ( { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) = { 𝑛 ∈ ℕ ∣ ( 𝑛𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) ) }
21 pm3.21 ( 𝑛𝑁 → ( ( μ ‘ 𝑛 ) ≠ 0 → ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) ) )
22 21 necon1bd ( 𝑛𝑁 → ( ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) → ( μ ‘ 𝑛 ) = 0 ) )
23 22 imp ( ( 𝑛𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) ) → ( μ ‘ 𝑛 ) = 0 )
24 23 a1i ( 𝑛 ∈ ℕ → ( ( 𝑛𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) ) → ( μ ‘ 𝑛 ) = 0 ) )
25 24 ss2rabi { 𝑛 ∈ ℕ ∣ ( 𝑛𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) ) } ⊆ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 }
26 20 25 eqsstri ( { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) ⊆ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 }
27 26 sseli ( 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } )
28 fveqeq2 ( 𝑛 = 𝑘 → ( ( μ ‘ 𝑛 ) = 0 ↔ ( μ ‘ 𝑘 ) = 0 ) )
29 28 elrab ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } ↔ ( 𝑘 ∈ ℕ ∧ ( μ ‘ 𝑘 ) = 0 ) )
30 29 simprbi ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } → ( μ ‘ 𝑘 ) = 0 )
31 27 30 syl ( 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → ( μ ‘ 𝑘 ) = 0 )
32 31 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) ) → ( μ ‘ 𝑘 ) = 0 )
33 dvdsfi ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ∈ Fin )
34 13 19 32 33 fsumss ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ( μ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ( μ ‘ 𝑘 ) )
35 fveq2 ( 𝑥 = { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) )
36 35 oveq2d ( 𝑥 = { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) )
37 33 13 ssfid ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ∈ Fin )
38 eqid { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } = { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) }
39 eqid ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑚 } ) = ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑚 } )
40 oveq1 ( 𝑞 = 𝑝 → ( 𝑞 pCnt 𝑥 ) = ( 𝑝 pCnt 𝑥 ) )
41 40 cbvmptv ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑥 ) )
42 oveq2 ( 𝑥 = 𝑚 → ( 𝑝 pCnt 𝑥 ) = ( 𝑝 pCnt 𝑚 ) )
43 42 mpteq2dv ( 𝑥 = 𝑚 → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) )
44 41 43 eqtrid ( 𝑥 = 𝑚 → ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) )
45 44 cbvmptv ( 𝑥 ∈ ℕ ↦ ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) )
46 38 39 45 sqff1o ( 𝑁 ∈ ℕ → ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑚 } ) : { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } –1-1-onto→ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
47 breq2 ( 𝑚 = 𝑘 → ( 𝑝𝑚𝑝𝑘 ) )
48 47 rabbidv ( 𝑚 = 𝑘 → { 𝑝 ∈ ℙ ∣ 𝑝𝑚 } = { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } )
49 prmex ℙ ∈ V
50 49 rabex { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ∈ V
51 48 39 50 fvmpt ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } → ( ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑚 } ) ‘ 𝑘 ) = { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } )
52 51 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ) → ( ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑚 } ) ‘ 𝑘 ) = { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } )
53 neg1cn - 1 ∈ ℂ
54 prmdvdsfi ( 𝑁 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin )
55 elpwi ( 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } → 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
56 ssfi ( ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin ∧ 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → 𝑥 ∈ Fin )
57 54 55 56 syl2an ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → 𝑥 ∈ Fin )
58 hashcl ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
59 57 58 syl ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
60 expcl ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ )
61 53 59 60 sylancr ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ )
62 36 37 46 52 61 fsumf1o ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) )
63 fzfid ( 𝑁 ∈ ℕ → ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∈ Fin )
64 54 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin )
65 pwfi ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin ↔ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin )
66 64 65 sylib ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin )
67 ssrab2 { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ⊆ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 }
68 ssfi ( ( 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin ∧ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ⊆ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin )
69 66 67 68 sylancl ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin )
70 simprr ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } )
71 fveqeq2 ( 𝑠 = 𝑥 → ( ( ♯ ‘ 𝑠 ) = 𝑧 ↔ ( ♯ ‘ 𝑥 ) = 𝑧 ) )
72 71 elrab ( 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ↔ ( 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∧ ( ♯ ‘ 𝑥 ) = 𝑧 ) )
73 72 simprbi ( 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } → ( ♯ ‘ 𝑥 ) = 𝑧 )
74 70 73 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( ♯ ‘ 𝑥 ) = 𝑧 )
75 74 ralrimivva ( 𝑁 ∈ ℕ → ∀ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∀ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( ♯ ‘ 𝑥 ) = 𝑧 )
76 invdisj ( ∀ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∀ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( ♯ ‘ 𝑥 ) = 𝑧Disj 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } )
77 75 76 syl ( 𝑁 ∈ ℕ → Disj 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } )
78 54 adantr ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin )
79 67 70 sselid ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
80 79 55 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
81 78 80 ssfid ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ Fin )
82 81 58 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
83 53 82 60 sylancr ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ )
84 63 69 77 83 fsumiun ( 𝑁 ∈ ℕ → Σ 𝑥 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) )
85 iunrab 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 }
86 54 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin )
87 elpwi ( 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } → 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
88 87 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
89 ssdomg ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin → ( 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } → 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) )
90 86 88 89 sylc ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
91 ssfi ( ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin ∧ 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → 𝑠 ∈ Fin )
92 54 87 91 syl2an ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → 𝑠 ∈ Fin )
93 hashdom ( ( 𝑠 ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin ) → ( ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ↔ 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) )
94 92 86 93 syl2anc ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ↔ 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) )
95 90 94 mpbird ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) )
96 hashcl ( 𝑠 ∈ Fin → ( ♯ ‘ 𝑠 ) ∈ ℕ0 )
97 92 96 syl ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 )
98 nn0uz 0 = ( ℤ ‘ 0 )
99 97 98 eleqtrdi ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ( ℤ ‘ 0 ) )
100 hashcl ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℕ0 )
101 54 100 syl ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℕ0 )
102 101 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℕ0 )
103 102 nn0zd ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℤ )
104 elfz5 ( ( ( ♯ ‘ 𝑠 ) ∈ ( ℤ ‘ 0 ) ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℤ ) → ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ↔ ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) )
105 99 103 104 syl2anc ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ↔ ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) )
106 95 105 mpbird ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) )
107 eqidd ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) )
108 eqeq2 ( 𝑧 = ( ♯ ‘ 𝑠 ) → ( ( ♯ ‘ 𝑠 ) = 𝑧 ↔ ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) )
109 108 rspcev ( ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ∧ ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) → ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 )
110 106 107 109 syl2anc ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) → ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 )
111 110 ralrimiva ( 𝑁 ∈ ℕ → ∀ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 )
112 rabid2 ( 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } ↔ ∀ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 )
113 111 112 sylibr ( 𝑁 ∈ ℕ → 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } )
114 85 113 eqtr4id ( 𝑁 ∈ ℕ → 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } = 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } )
115 114 sumeq1d ( 𝑁 ∈ ℕ → Σ 𝑥 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) )
116 elfznn0 ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) → 𝑧 ∈ ℕ0 )
117 116 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → 𝑧 ∈ ℕ0 )
118 expcl ( ( - 1 ∈ ℂ ∧ 𝑧 ∈ ℕ0 ) → ( - 1 ↑ 𝑧 ) ∈ ℂ )
119 53 117 118 sylancr ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → ( - 1 ↑ 𝑧 ) ∈ ℂ )
120 fsumconst ( ( { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin ∧ ( - 1 ↑ 𝑧 ) ∈ ℂ ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) )
121 69 119 120 syl2anc ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) )
122 73 adantl ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) → ( ♯ ‘ 𝑥 ) = 𝑧 )
123 122 oveq2d ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ 𝑧 ) )
124 123 sumeq2dv ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) )
125 elfzelz ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) → 𝑧 ∈ ℤ )
126 hashbc ( ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) )
127 54 125 126 syl2an ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) )
128 127 oveq1d ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) )
129 121 124 128 3eqtr4d ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) )
130 129 sumeq2dv ( 𝑁 ∈ ℕ → Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) )
131 1pneg1e0 ( 1 + - 1 ) = 0
132 131 oveq1i ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) )
133 binom1p ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℕ0 ) → ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) )
134 53 101 133 sylancr ( 𝑁 ∈ ℕ → ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) )
135 132 134 eqtr3id ( 𝑁 ∈ ℕ → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) )
136 eqeq2 ( 1 = if ( 𝑁 = 1 , 1 , 0 ) → ( ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = 1 ↔ ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) )
137 eqeq2 ( 0 = if ( 𝑁 = 1 , 1 , 0 ) → ( ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = 0 ↔ ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) )
138 nprmdvds1 ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 )
139 simpr ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → 𝑁 = 1 )
140 139 breq2d ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 𝑝𝑁𝑝 ∥ 1 ) )
141 140 notbid ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ¬ 𝑝𝑁 ↔ ¬ 𝑝 ∥ 1 ) )
142 138 141 imbitrrid ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 𝑝 ∈ ℙ → ¬ 𝑝𝑁 ) )
143 142 ralrimiv ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ∀ 𝑝 ∈ ℙ ¬ 𝑝𝑁 )
144 rabeq0 ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } = ∅ ↔ ∀ 𝑝 ∈ ℙ ¬ 𝑝𝑁 )
145 143 144 sylibr ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } = ∅ )
146 145 fveq2d ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) = ( ♯ ‘ ∅ ) )
147 hash0 ( ♯ ‘ ∅ ) = 0
148 146 147 eqtrdi ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) = 0 )
149 148 oveq2d ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = ( 0 ↑ 0 ) )
150 0exp0e1 ( 0 ↑ 0 ) = 1
151 149 150 eqtrdi ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = 1 )
152 df-ne ( 𝑁 ≠ 1 ↔ ¬ 𝑁 = 1 )
153 eluz2b3 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) )
154 153 biimpri ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
155 152 154 sylan2br ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
156 exprmfct ( 𝑁 ∈ ( ℤ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝𝑁 )
157 155 156 syl ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ∃ 𝑝 ∈ ℙ 𝑝𝑁 )
158 rabn0 ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝𝑁 )
159 157 158 sylibr ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ≠ ∅ )
160 54 adantr ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin )
161 hashnncl ( { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∈ Fin → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℕ ↔ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ≠ ∅ ) )
162 160 161 syl ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℕ ↔ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ≠ ∅ ) )
163 159 162 mpbird ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ∈ ℕ )
164 163 0expd ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = 0 )
165 136 137 151 164 ifbothda ( 𝑁 ∈ ℕ → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) )
166 130 135 165 3eqtr2d ( 𝑁 ∈ ℕ → Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = if ( 𝑁 = 1 , 1 , 0 ) )
167 84 115 166 3eqtr3d ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = if ( 𝑁 = 1 , 1 , 0 ) )
168 62 167 eqtr3d ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝𝑘 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) )
169 10 34 168 3eqtr3d ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ( μ ‘ 𝑘 ) = if ( 𝑁 = 1 , 1 , 0 ) )