| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( μ ‘ 𝑛 ) = ( μ ‘ 𝑘 ) ) |
| 2 |
1
|
neeq1d |
⊢ ( 𝑛 = 𝑘 → ( ( μ ‘ 𝑛 ) ≠ 0 ↔ ( μ ‘ 𝑘 ) ≠ 0 ) ) |
| 3 |
|
breq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∥ 𝑁 ↔ 𝑘 ∥ 𝑁 ) ) |
| 4 |
2 3
|
anbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ↔ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘 ∥ 𝑁 ) ) ) |
| 5 |
4
|
elrab |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↔ ( 𝑘 ∈ ℕ ∧ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘 ∥ 𝑁 ) ) ) |
| 6 |
|
muval2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( μ ‘ 𝑘 ) ≠ 0 ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 7 |
6
|
adantrr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( μ ‘ 𝑘 ) ≠ 0 ∧ 𝑘 ∥ 𝑁 ) ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 8 |
5 7
|
sylbi |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 10 |
9
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( μ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 11 |
|
simpr |
⊢ ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) → 𝑛 ∥ 𝑁 ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) → 𝑛 ∥ 𝑁 ) ) |
| 13 |
12
|
ss2rabdv |
⊢ ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 14 |
|
ssrab2 |
⊢ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ⊆ ℕ |
| 15 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) |
| 16 |
14 15
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → 𝑘 ∈ ℕ ) |
| 17 |
|
mucl |
⊢ ( 𝑘 ∈ ℕ → ( μ ‘ 𝑘 ) ∈ ℤ ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) ∈ ℤ ) |
| 19 |
18
|
zcnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) ∈ ℂ ) |
| 20 |
|
difrab |
⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) = { 𝑛 ∈ ℕ ∣ ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) } |
| 21 |
|
pm3.21 |
⊢ ( 𝑛 ∥ 𝑁 → ( ( μ ‘ 𝑛 ) ≠ 0 → ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) |
| 22 |
21
|
necon1bd |
⊢ ( 𝑛 ∥ 𝑁 → ( ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) → ( μ ‘ 𝑛 ) = 0 ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) → ( μ ‘ 𝑛 ) = 0 ) |
| 24 |
23
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) → ( μ ‘ 𝑛 ) = 0 ) ) |
| 25 |
24
|
ss2rabi |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑛 ∥ 𝑁 ∧ ¬ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) } ⊆ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } |
| 26 |
20 25
|
eqsstri |
⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) ⊆ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } |
| 27 |
26
|
sseli |
⊢ ( 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } ) |
| 28 |
|
fveqeq2 |
⊢ ( 𝑛 = 𝑘 → ( ( μ ‘ 𝑛 ) = 0 ↔ ( μ ‘ 𝑘 ) = 0 ) ) |
| 29 |
28
|
elrab |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } ↔ ( 𝑘 ∈ ℕ ∧ ( μ ‘ 𝑘 ) = 0 ) ) |
| 30 |
29
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( μ ‘ 𝑛 ) = 0 } → ( μ ‘ 𝑘 ) = 0 ) |
| 31 |
27 30
|
syl |
⊢ ( 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( μ ‘ 𝑘 ) = 0 ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∖ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) ) → ( μ ‘ 𝑘 ) = 0 ) |
| 33 |
|
dvdsfi |
⊢ ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ∈ Fin ) |
| 34 |
13 19 32 33
|
fsumss |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( μ ‘ 𝑘 ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ( μ ‘ 𝑘 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑥 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 37 |
33 13
|
ssfid |
⊢ ( 𝑁 ∈ ℕ → { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ∈ Fin ) |
| 38 |
|
eqid |
⊢ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } = { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } |
| 39 |
|
eqid |
⊢ ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) = ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) |
| 40 |
|
oveq1 |
⊢ ( 𝑞 = 𝑝 → ( 𝑞 pCnt 𝑥 ) = ( 𝑝 pCnt 𝑥 ) ) |
| 41 |
40
|
cbvmptv |
⊢ ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑥 ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝑝 pCnt 𝑥 ) = ( 𝑝 pCnt 𝑚 ) ) |
| 43 |
42
|
mpteq2dv |
⊢ ( 𝑥 = 𝑚 → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) ) |
| 44 |
41 43
|
eqtrid |
⊢ ( 𝑥 = 𝑚 → ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) ) |
| 45 |
44
|
cbvmptv |
⊢ ( 𝑥 ∈ ℕ ↦ ( 𝑞 ∈ ℙ ↦ ( 𝑞 pCnt 𝑥 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑚 ) ) ) |
| 46 |
38 39 45
|
sqff1o |
⊢ ( 𝑁 ∈ ℕ → ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) : { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } –1-1-onto→ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 47 |
|
breq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝑝 ∥ 𝑚 ↔ 𝑝 ∥ 𝑘 ) ) |
| 48 |
47
|
rabbidv |
⊢ ( 𝑚 = 𝑘 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) |
| 49 |
|
prmex |
⊢ ℙ ∈ V |
| 50 |
49
|
rabex |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ∈ V |
| 51 |
48 39 50
|
fvmpt |
⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } → ( ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) ‘ 𝑘 ) = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ) → ( ( 𝑚 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚 } ) ‘ 𝑘 ) = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) |
| 53 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 54 |
|
prmdvdsfi |
⊢ ( 𝑁 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 55 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 56 |
|
ssfi |
⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑥 ∈ Fin ) |
| 57 |
54 55 56
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑥 ∈ Fin ) |
| 58 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 59 |
57 58
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 60 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ ) |
| 61 |
53 59 60
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ ) |
| 62 |
36 37 46 52 61
|
fsumf1o |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) ) |
| 63 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∈ Fin ) |
| 64 |
54
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 65 |
|
pwfi |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ↔ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 66 |
64 65
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 67 |
|
ssrab2 |
⊢ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ⊆ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } |
| 68 |
|
ssfi |
⊢ ( ( 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ⊆ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin ) |
| 69 |
66 67 68
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin ) |
| 70 |
|
simprr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) |
| 71 |
|
fveqeq2 |
⊢ ( 𝑠 = 𝑥 → ( ( ♯ ‘ 𝑠 ) = 𝑧 ↔ ( ♯ ‘ 𝑥 ) = 𝑧 ) ) |
| 72 |
71
|
elrab |
⊢ ( 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ↔ ( 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∧ ( ♯ ‘ 𝑥 ) = 𝑧 ) ) |
| 73 |
72
|
simprbi |
⊢ ( 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } → ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 74 |
70 73
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 75 |
74
|
ralrimivva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∀ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 76 |
|
invdisj |
⊢ ( ∀ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∀ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( ♯ ‘ 𝑥 ) = 𝑧 → Disj 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) |
| 77 |
75 76
|
syl |
⊢ ( 𝑁 ∈ ℕ → Disj 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) |
| 78 |
54
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 79 |
67 70
|
sselid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 80 |
79 55
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 81 |
78 80
|
ssfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → 𝑥 ∈ Fin ) |
| 82 |
81 58
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 83 |
53 82 60
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ∈ ℂ ) |
| 84 |
63 69 77 83
|
fsumiun |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 85 |
|
iunrab |
⊢ ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } |
| 86 |
54
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 87 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 88 |
87
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 89 |
|
ssdomg |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin → ( 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 90 |
86 88 89
|
sylc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 91 |
|
ssfi |
⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ 𝑠 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ∈ Fin ) |
| 92 |
54 87 91
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑠 ∈ Fin ) |
| 93 |
|
hashdom |
⊢ ( ( 𝑠 ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) → ( ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ↔ 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 94 |
92 86 93
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ↔ 𝑠 ≼ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 95 |
90 94
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 96 |
|
hashcl |
⊢ ( 𝑠 ∈ Fin → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 97 |
92 96
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
| 98 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 99 |
97 98
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 100 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) |
| 101 |
54 100
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) |
| 103 |
102
|
nn0zd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℤ ) |
| 104 |
|
elfz5 |
⊢ ( ( ( ♯ ‘ 𝑠 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℤ ) → ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ↔ ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) |
| 105 |
99 103 104
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ↔ ( ♯ ‘ 𝑠 ) ≤ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) |
| 106 |
95 105
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) |
| 107 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) |
| 108 |
|
eqeq2 |
⊢ ( 𝑧 = ( ♯ ‘ 𝑠 ) → ( ( ♯ ‘ 𝑠 ) = 𝑧 ↔ ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) ) |
| 109 |
108
|
rspcev |
⊢ ( ( ( ♯ ‘ 𝑠 ) ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ∧ ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑠 ) ) → ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) |
| 110 |
106 107 109
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) |
| 111 |
110
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) |
| 112 |
|
rabid2 |
⊢ ( 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } ↔ ∀ 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 ) |
| 113 |
111 112
|
sylibr |
⊢ ( 𝑁 ∈ ℕ → 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ∃ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ♯ ‘ 𝑠 ) = 𝑧 } ) |
| 114 |
85 113
|
eqtr4id |
⊢ ( 𝑁 ∈ ℕ → ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } = 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 115 |
114
|
sumeq1d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ ∪ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 116 |
|
elfznn0 |
⊢ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ ℕ0 ) |
| 117 |
116
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → 𝑧 ∈ ℕ0 ) |
| 118 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑧 ∈ ℕ0 ) → ( - 1 ↑ 𝑧 ) ∈ ℂ ) |
| 119 |
53 117 118
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → ( - 1 ↑ 𝑧 ) ∈ ℂ ) |
| 120 |
|
fsumconst |
⊢ ( ( { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ∈ Fin ∧ ( - 1 ↑ 𝑧 ) ∈ ℂ ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) ) |
| 121 |
69 119 120
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) ) |
| 122 |
73
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) → ( ♯ ‘ 𝑥 ) = 𝑧 ) |
| 123 |
122
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) ∧ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) → ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( - 1 ↑ 𝑧 ) ) |
| 124 |
123
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ 𝑧 ) ) |
| 125 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ ℤ ) |
| 126 |
|
hashbc |
⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) |
| 127 |
54 125 126
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) = ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) ) |
| 128 |
127
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) = ( ( ♯ ‘ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ) · ( - 1 ↑ 𝑧 ) ) ) |
| 129 |
121 124 128
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ) → Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 130 |
129
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 131 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
| 132 |
131
|
oveq1i |
⊢ ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) |
| 133 |
|
binom1p |
⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ0 ) → ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 134 |
53 101 133
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 135 |
132 134
|
eqtr3id |
⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) ( ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) C 𝑧 ) · ( - 1 ↑ 𝑧 ) ) ) |
| 136 |
|
eqeq2 |
⊢ ( 1 = if ( 𝑁 = 1 , 1 , 0 ) → ( ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 1 ↔ ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) ) |
| 137 |
|
eqeq2 |
⊢ ( 0 = if ( 𝑁 = 1 , 1 , 0 ) → ( ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 0 ↔ ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) ) |
| 138 |
|
nprmdvds1 |
⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) |
| 139 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → 𝑁 = 1 ) |
| 140 |
139
|
breq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 𝑝 ∥ 𝑁 ↔ 𝑝 ∥ 1 ) ) |
| 141 |
140
|
notbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ¬ 𝑝 ∥ 𝑁 ↔ ¬ 𝑝 ∥ 1 ) ) |
| 142 |
138 141
|
imbitrrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 𝑁 ) ) |
| 143 |
142
|
ralrimiv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ∀ 𝑝 ∈ ℙ ¬ 𝑝 ∥ 𝑁 ) |
| 144 |
|
rabeq0 |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = ∅ ↔ ∀ 𝑝 ∈ ℙ ¬ 𝑝 ∥ 𝑁 ) |
| 145 |
143 144
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } = ∅ ) |
| 146 |
145
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) = ( ♯ ‘ ∅ ) ) |
| 147 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 148 |
146 147
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) = 0 ) |
| 149 |
148
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = ( 0 ↑ 0 ) ) |
| 150 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
| 151 |
149 150
|
eqtrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 1 ) |
| 152 |
|
df-ne |
⊢ ( 𝑁 ≠ 1 ↔ ¬ 𝑁 = 1 ) |
| 153 |
|
eluz2b3 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
| 154 |
153
|
biimpri |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 155 |
152 154
|
sylan2br |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 156 |
|
exprmfct |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |
| 157 |
155 156
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |
| 158 |
|
rabn0 |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ↔ ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑁 ) |
| 159 |
157 158
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ) |
| 160 |
54
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin ) |
| 161 |
|
hashnncl |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∈ Fin → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ) ) |
| 162 |
160 161
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ≠ ∅ ) ) |
| 163 |
159 162
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∈ ℕ ) |
| 164 |
163
|
0expd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = 0 ) |
| 165 |
136 137 151 164
|
ifbothda |
⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 166 |
130 135 165
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑧 ∈ ( 0 ... ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) Σ 𝑥 ∈ { 𝑠 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ∣ ( ♯ ‘ 𝑠 ) = 𝑧 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 167 |
84 115 166
|
3eqtr3d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑥 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ( - 1 ↑ ( ♯ ‘ 𝑥 ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 168 |
62 167
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) } ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘 } ) ) = if ( 𝑁 = 1 , 1 , 0 ) ) |
| 169 |
10 34 168
|
3eqtr3d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ( μ ‘ 𝑘 ) = if ( 𝑁 = 1 , 1 , 0 ) ) |