Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
β’ ( π = π β ( ΞΌ β π ) = ( ΞΌ β π ) ) |
2 |
1
|
neeq1d |
β’ ( π = π β ( ( ΞΌ β π ) β 0 β ( ΞΌ β π ) β 0 ) ) |
3 |
|
breq1 |
β’ ( π = π β ( π β₯ π β π β₯ π ) ) |
4 |
2 3
|
anbi12d |
β’ ( π = π β ( ( ( ΞΌ β π ) β 0 β§ π β₯ π ) β ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) ) |
5 |
4
|
elrab |
β’ ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β ( π β β β§ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) ) |
6 |
|
muval2 |
β’ ( ( π β β β§ ( ΞΌ β π ) β 0 ) β ( ΞΌ β π ) = ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) ) |
7 |
6
|
adantrr |
β’ ( ( π β β β§ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) β ( ΞΌ β π ) = ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) ) |
8 |
5 7
|
sylbi |
β’ ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β ( ΞΌ β π ) = ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) ) |
9 |
8
|
adantl |
β’ ( ( π β β β§ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β ( ΞΌ β π ) = ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) ) |
10 |
9
|
sumeq2dv |
β’ ( π β β β Ξ£ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ( ΞΌ β π ) = Ξ£ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) ) |
11 |
|
simpr |
β’ ( ( ( ΞΌ β π ) β 0 β§ π β₯ π ) β π β₯ π ) |
12 |
11
|
a1i |
β’ ( ( π β β β§ π β β ) β ( ( ( ΞΌ β π ) β 0 β§ π β₯ π ) β π β₯ π ) ) |
13 |
12
|
ss2rabdv |
β’ ( π β β β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β { π β β β£ π β₯ π } ) |
14 |
|
ssrab2 |
β’ { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β β |
15 |
|
simpr |
β’ ( ( π β β β§ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) |
16 |
14 15
|
sselid |
β’ ( ( π β β β§ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β π β β ) |
17 |
|
mucl |
β’ ( π β β β ( ΞΌ β π ) β β€ ) |
18 |
16 17
|
syl |
β’ ( ( π β β β§ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β ( ΞΌ β π ) β β€ ) |
19 |
18
|
zcnd |
β’ ( ( π β β β§ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β ( ΞΌ β π ) β β ) |
20 |
|
difrab |
β’ ( { π β β β£ π β₯ π } β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) = { π β β β£ ( π β₯ π β§ Β¬ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) } |
21 |
|
pm3.21 |
β’ ( π β₯ π β ( ( ΞΌ β π ) β 0 β ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) ) |
22 |
21
|
necon1bd |
β’ ( π β₯ π β ( Β¬ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) β ( ΞΌ β π ) = 0 ) ) |
23 |
22
|
imp |
β’ ( ( π β₯ π β§ Β¬ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) β ( ΞΌ β π ) = 0 ) |
24 |
23
|
a1i |
β’ ( π β β β ( ( π β₯ π β§ Β¬ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) β ( ΞΌ β π ) = 0 ) ) |
25 |
24
|
ss2rabi |
β’ { π β β β£ ( π β₯ π β§ Β¬ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) ) } β { π β β β£ ( ΞΌ β π ) = 0 } |
26 |
20 25
|
eqsstri |
β’ ( { π β β β£ π β₯ π } β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β { π β β β£ ( ΞΌ β π ) = 0 } |
27 |
26
|
sseli |
β’ ( π β ( { π β β β£ π β₯ π } β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β π β { π β β β£ ( ΞΌ β π ) = 0 } ) |
28 |
|
fveqeq2 |
β’ ( π = π β ( ( ΞΌ β π ) = 0 β ( ΞΌ β π ) = 0 ) ) |
29 |
28
|
elrab |
β’ ( π β { π β β β£ ( ΞΌ β π ) = 0 } β ( π β β β§ ( ΞΌ β π ) = 0 ) ) |
30 |
29
|
simprbi |
β’ ( π β { π β β β£ ( ΞΌ β π ) = 0 } β ( ΞΌ β π ) = 0 ) |
31 |
27 30
|
syl |
β’ ( π β ( { π β β β£ π β₯ π } β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β ( ΞΌ β π ) = 0 ) |
32 |
31
|
adantl |
β’ ( ( π β β β§ π β ( { π β β β£ π β₯ π } β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) ) β ( ΞΌ β π ) = 0 ) |
33 |
|
fzfid |
β’ ( π β β β ( 1 ... π ) β Fin ) |
34 |
|
dvdsssfz1 |
β’ ( π β β β { π β β β£ π β₯ π } β ( 1 ... π ) ) |
35 |
33 34
|
ssfid |
β’ ( π β β β { π β β β£ π β₯ π } β Fin ) |
36 |
13 19 32 35
|
fsumss |
β’ ( π β β β Ξ£ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ( ΞΌ β π ) = Ξ£ π β { π β β β£ π β₯ π } ( ΞΌ β π ) ) |
37 |
|
fveq2 |
β’ ( π₯ = { π β β β£ π β₯ π } β ( β― β π₯ ) = ( β― β { π β β β£ π β₯ π } ) ) |
38 |
37
|
oveq2d |
β’ ( π₯ = { π β β β£ π β₯ π } β ( - 1 β ( β― β π₯ ) ) = ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) ) |
39 |
35 13
|
ssfid |
β’ ( π β β β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β Fin ) |
40 |
|
eqid |
β’ { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } = { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } |
41 |
|
eqid |
β’ ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β¦ { π β β β£ π β₯ π } ) = ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β¦ { π β β β£ π β₯ π } ) |
42 |
|
oveq1 |
β’ ( π = π β ( π pCnt π₯ ) = ( π pCnt π₯ ) ) |
43 |
42
|
cbvmptv |
β’ ( π β β β¦ ( π pCnt π₯ ) ) = ( π β β β¦ ( π pCnt π₯ ) ) |
44 |
|
oveq2 |
β’ ( π₯ = π β ( π pCnt π₯ ) = ( π pCnt π ) ) |
45 |
44
|
mpteq2dv |
β’ ( π₯ = π β ( π β β β¦ ( π pCnt π₯ ) ) = ( π β β β¦ ( π pCnt π ) ) ) |
46 |
43 45
|
eqtrid |
β’ ( π₯ = π β ( π β β β¦ ( π pCnt π₯ ) ) = ( π β β β¦ ( π pCnt π ) ) ) |
47 |
46
|
cbvmptv |
β’ ( π₯ β β β¦ ( π β β β¦ ( π pCnt π₯ ) ) ) = ( π β β β¦ ( π β β β¦ ( π pCnt π ) ) ) |
48 |
40 41 47
|
sqff1o |
β’ ( π β β β ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β¦ { π β β β£ π β₯ π } ) : { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β1-1-ontoβ π« { π β β β£ π β₯ π } ) |
49 |
|
breq2 |
β’ ( π = π β ( π β₯ π β π β₯ π ) ) |
50 |
49
|
rabbidv |
β’ ( π = π β { π β β β£ π β₯ π } = { π β β β£ π β₯ π } ) |
51 |
|
prmex |
β’ β β V |
52 |
51
|
rabex |
β’ { π β β β£ π β₯ π } β V |
53 |
50 41 52
|
fvmpt |
β’ ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β ( ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β¦ { π β β β£ π β₯ π } ) β π ) = { π β β β£ π β₯ π } ) |
54 |
53
|
adantl |
β’ ( ( π β β β§ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ) β ( ( π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } β¦ { π β β β£ π β₯ π } ) β π ) = { π β β β£ π β₯ π } ) |
55 |
|
neg1cn |
β’ - 1 β β |
56 |
|
prmdvdsfi |
β’ ( π β β β { π β β β£ π β₯ π } β Fin ) |
57 |
|
elpwi |
β’ ( π₯ β π« { π β β β£ π β₯ π } β π₯ β { π β β β£ π β₯ π } ) |
58 |
|
ssfi |
β’ ( ( { π β β β£ π β₯ π } β Fin β§ π₯ β { π β β β£ π β₯ π } ) β π₯ β Fin ) |
59 |
56 57 58
|
syl2an |
β’ ( ( π β β β§ π₯ β π« { π β β β£ π β₯ π } ) β π₯ β Fin ) |
60 |
|
hashcl |
β’ ( π₯ β Fin β ( β― β π₯ ) β β0 ) |
61 |
59 60
|
syl |
β’ ( ( π β β β§ π₯ β π« { π β β β£ π β₯ π } ) β ( β― β π₯ ) β β0 ) |
62 |
|
expcl |
β’ ( ( - 1 β β β§ ( β― β π₯ ) β β0 ) β ( - 1 β ( β― β π₯ ) ) β β ) |
63 |
55 61 62
|
sylancr |
β’ ( ( π β β β§ π₯ β π« { π β β β£ π β₯ π } ) β ( - 1 β ( β― β π₯ ) ) β β ) |
64 |
38 39 48 54 63
|
fsumf1o |
β’ ( π β β β Ξ£ π₯ β π« { π β β β£ π β₯ π } ( - 1 β ( β― β π₯ ) ) = Ξ£ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) ) |
65 |
|
fzfid |
β’ ( π β β β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β Fin ) |
66 |
56
|
adantr |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β { π β β β£ π β₯ π } β Fin ) |
67 |
|
pwfi |
β’ ( { π β β β£ π β₯ π } β Fin β π« { π β β β£ π β₯ π } β Fin ) |
68 |
66 67
|
sylib |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β π« { π β β β£ π β₯ π } β Fin ) |
69 |
|
ssrab2 |
β’ { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } β π« { π β β β£ π β₯ π } |
70 |
|
ssfi |
β’ ( ( π« { π β β β£ π β₯ π } β Fin β§ { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } β π« { π β β β£ π β₯ π } ) β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } β Fin ) |
71 |
68 69 70
|
sylancl |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } β Fin ) |
72 |
|
simprr |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) |
73 |
|
fveqeq2 |
β’ ( π = π₯ β ( ( β― β π ) = π§ β ( β― β π₯ ) = π§ ) ) |
74 |
73
|
elrab |
β’ ( π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } β ( π₯ β π« { π β β β£ π β₯ π } β§ ( β― β π₯ ) = π§ ) ) |
75 |
74
|
simprbi |
β’ ( π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } β ( β― β π₯ ) = π§ ) |
76 |
72 75
|
syl |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β ( β― β π₯ ) = π§ ) |
77 |
76
|
ralrimivva |
β’ ( π β β β β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( β― β π₯ ) = π§ ) |
78 |
|
invdisj |
β’ ( β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( β― β π₯ ) = π§ β Disj π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) |
79 |
77 78
|
syl |
β’ ( π β β β Disj π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) |
80 |
56
|
adantr |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β { π β β β£ π β₯ π } β Fin ) |
81 |
69 72
|
sselid |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β π₯ β π« { π β β β£ π β₯ π } ) |
82 |
81 57
|
syl |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β π₯ β { π β β β£ π β₯ π } ) |
83 |
80 82
|
ssfid |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β π₯ β Fin ) |
84 |
83 60
|
syl |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β ( β― β π₯ ) β β0 ) |
85 |
55 84 62
|
sylancr |
β’ ( ( π β β β§ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) β ( - 1 β ( β― β π₯ ) ) β β ) |
86 |
65 71 79 85
|
fsumiun |
β’ ( π β β β Ξ£ π₯ β βͺ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β ( β― β π₯ ) ) = Ξ£ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β ( β― β π₯ ) ) ) |
87 |
|
iunrab |
β’ βͺ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } = { π β π« { π β β β£ π β₯ π } β£ β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( β― β π ) = π§ } |
88 |
56
|
adantr |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β { π β β β£ π β₯ π } β Fin ) |
89 |
|
elpwi |
β’ ( π β π« { π β β β£ π β₯ π } β π β { π β β β£ π β₯ π } ) |
90 |
89
|
adantl |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β π β { π β β β£ π β₯ π } ) |
91 |
|
ssdomg |
β’ ( { π β β β£ π β₯ π } β Fin β ( π β { π β β β£ π β₯ π } β π βΌ { π β β β£ π β₯ π } ) ) |
92 |
88 90 91
|
sylc |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β π βΌ { π β β β£ π β₯ π } ) |
93 |
|
ssfi |
β’ ( ( { π β β β£ π β₯ π } β Fin β§ π β { π β β β£ π β₯ π } ) β π β Fin ) |
94 |
56 89 93
|
syl2an |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β π β Fin ) |
95 |
|
hashdom |
β’ ( ( π β Fin β§ { π β β β£ π β₯ π } β Fin ) β ( ( β― β π ) β€ ( β― β { π β β β£ π β₯ π } ) β π βΌ { π β β β£ π β₯ π } ) ) |
96 |
94 88 95
|
syl2anc |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( ( β― β π ) β€ ( β― β { π β β β£ π β₯ π } ) β π βΌ { π β β β£ π β₯ π } ) ) |
97 |
92 96
|
mpbird |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( β― β π ) β€ ( β― β { π β β β£ π β₯ π } ) ) |
98 |
|
hashcl |
β’ ( π β Fin β ( β― β π ) β β0 ) |
99 |
94 98
|
syl |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( β― β π ) β β0 ) |
100 |
|
nn0uz |
β’ β0 = ( β€β₯ β 0 ) |
101 |
99 100
|
eleqtrdi |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( β― β π ) β ( β€β₯ β 0 ) ) |
102 |
|
hashcl |
β’ ( { π β β β£ π β₯ π } β Fin β ( β― β { π β β β£ π β₯ π } ) β β0 ) |
103 |
56 102
|
syl |
β’ ( π β β β ( β― β { π β β β£ π β₯ π } ) β β0 ) |
104 |
103
|
adantr |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( β― β { π β β β£ π β₯ π } ) β β0 ) |
105 |
104
|
nn0zd |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( β― β { π β β β£ π β₯ π } ) β β€ ) |
106 |
|
elfz5 |
β’ ( ( ( β― β π ) β ( β€β₯ β 0 ) β§ ( β― β { π β β β£ π β₯ π } ) β β€ ) β ( ( β― β π ) β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β ( β― β π ) β€ ( β― β { π β β β£ π β₯ π } ) ) ) |
107 |
101 105 106
|
syl2anc |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( ( β― β π ) β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β ( β― β π ) β€ ( β― β { π β β β£ π β₯ π } ) ) ) |
108 |
97 107
|
mpbird |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( β― β π ) β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) |
109 |
|
eqidd |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β ( β― β π ) = ( β― β π ) ) |
110 |
|
eqeq2 |
β’ ( π§ = ( β― β π ) β ( ( β― β π ) = π§ β ( β― β π ) = ( β― β π ) ) ) |
111 |
110
|
rspcev |
β’ ( ( ( β― β π ) β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β§ ( β― β π ) = ( β― β π ) ) β β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( β― β π ) = π§ ) |
112 |
108 109 111
|
syl2anc |
β’ ( ( π β β β§ π β π« { π β β β£ π β₯ π } ) β β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( β― β π ) = π§ ) |
113 |
112
|
ralrimiva |
β’ ( π β β β β π β π« { π β β β£ π β₯ π } β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( β― β π ) = π§ ) |
114 |
|
rabid2 |
β’ ( π« { π β β β£ π β₯ π } = { π β π« { π β β β£ π β₯ π } β£ β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( β― β π ) = π§ } β β π β π« { π β β β£ π β₯ π } β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( β― β π ) = π§ ) |
115 |
113 114
|
sylibr |
β’ ( π β β β π« { π β β β£ π β₯ π } = { π β π« { π β β β£ π β₯ π } β£ β π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( β― β π ) = π§ } ) |
116 |
87 115
|
eqtr4id |
β’ ( π β β β βͺ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } = π« { π β β β£ π β₯ π } ) |
117 |
116
|
sumeq1d |
β’ ( π β β β Ξ£ π₯ β βͺ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β ( β― β π₯ ) ) = Ξ£ π₯ β π« { π β β β£ π β₯ π } ( - 1 β ( β― β π₯ ) ) ) |
118 |
|
elfznn0 |
β’ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β π§ β β0 ) |
119 |
118
|
adantl |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β π§ β β0 ) |
120 |
|
expcl |
β’ ( ( - 1 β β β§ π§ β β0 ) β ( - 1 β π§ ) β β ) |
121 |
55 119 120
|
sylancr |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β ( - 1 β π§ ) β β ) |
122 |
|
fsumconst |
β’ ( ( { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } β Fin β§ ( - 1 β π§ ) β β ) β Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β π§ ) = ( ( β― β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) Β· ( - 1 β π§ ) ) ) |
123 |
71 121 122
|
syl2anc |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β π§ ) = ( ( β― β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) Β· ( - 1 β π§ ) ) ) |
124 |
75
|
adantl |
β’ ( ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) β ( β― β π₯ ) = π§ ) |
125 |
124
|
oveq2d |
β’ ( ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β§ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) β ( - 1 β ( β― β π₯ ) ) = ( - 1 β π§ ) ) |
126 |
125
|
sumeq2dv |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β ( β― β π₯ ) ) = Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β π§ ) ) |
127 |
|
elfzelz |
β’ ( π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) β π§ β β€ ) |
128 |
|
hashbc |
β’ ( ( { π β β β£ π β₯ π } β Fin β§ π§ β β€ ) β ( ( β― β { π β β β£ π β₯ π } ) C π§ ) = ( β― β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) |
129 |
56 127 128
|
syl2an |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β ( ( β― β { π β β β£ π β₯ π } ) C π§ ) = ( β― β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) ) |
130 |
129
|
oveq1d |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β ( ( ( β― β { π β β β£ π β₯ π } ) C π§ ) Β· ( - 1 β π§ ) ) = ( ( β― β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ) Β· ( - 1 β π§ ) ) ) |
131 |
123 126 130
|
3eqtr4d |
β’ ( ( π β β β§ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ) β Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β ( β― β π₯ ) ) = ( ( ( β― β { π β β β£ π β₯ π } ) C π§ ) Β· ( - 1 β π§ ) ) ) |
132 |
131
|
sumeq2dv |
β’ ( π β β β Ξ£ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β ( β― β π₯ ) ) = Ξ£ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( ( ( β― β { π β β β£ π β₯ π } ) C π§ ) Β· ( - 1 β π§ ) ) ) |
133 |
|
1pneg1e0 |
β’ ( 1 + - 1 ) = 0 |
134 |
133
|
oveq1i |
β’ ( ( 1 + - 1 ) β ( β― β { π β β β£ π β₯ π } ) ) = ( 0 β ( β― β { π β β β£ π β₯ π } ) ) |
135 |
|
binom1p |
β’ ( ( - 1 β β β§ ( β― β { π β β β£ π β₯ π } ) β β0 ) β ( ( 1 + - 1 ) β ( β― β { π β β β£ π β₯ π } ) ) = Ξ£ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( ( ( β― β { π β β β£ π β₯ π } ) C π§ ) Β· ( - 1 β π§ ) ) ) |
136 |
55 103 135
|
sylancr |
β’ ( π β β β ( ( 1 + - 1 ) β ( β― β { π β β β£ π β₯ π } ) ) = Ξ£ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( ( ( β― β { π β β β£ π β₯ π } ) C π§ ) Β· ( - 1 β π§ ) ) ) |
137 |
134 136
|
eqtr3id |
β’ ( π β β β ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = Ξ£ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) ( ( ( β― β { π β β β£ π β₯ π } ) C π§ ) Β· ( - 1 β π§ ) ) ) |
138 |
|
eqeq2 |
β’ ( 1 = if ( π = 1 , 1 , 0 ) β ( ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = 1 β ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = if ( π = 1 , 1 , 0 ) ) ) |
139 |
|
eqeq2 |
β’ ( 0 = if ( π = 1 , 1 , 0 ) β ( ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = 0 β ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = if ( π = 1 , 1 , 0 ) ) ) |
140 |
|
nprmdvds1 |
β’ ( π β β β Β¬ π β₯ 1 ) |
141 |
|
simpr |
β’ ( ( π β β β§ π = 1 ) β π = 1 ) |
142 |
141
|
breq2d |
β’ ( ( π β β β§ π = 1 ) β ( π β₯ π β π β₯ 1 ) ) |
143 |
142
|
notbid |
β’ ( ( π β β β§ π = 1 ) β ( Β¬ π β₯ π β Β¬ π β₯ 1 ) ) |
144 |
140 143
|
imbitrrid |
β’ ( ( π β β β§ π = 1 ) β ( π β β β Β¬ π β₯ π ) ) |
145 |
144
|
ralrimiv |
β’ ( ( π β β β§ π = 1 ) β β π β β Β¬ π β₯ π ) |
146 |
|
rabeq0 |
β’ ( { π β β β£ π β₯ π } = β
β β π β β Β¬ π β₯ π ) |
147 |
145 146
|
sylibr |
β’ ( ( π β β β§ π = 1 ) β { π β β β£ π β₯ π } = β
) |
148 |
147
|
fveq2d |
β’ ( ( π β β β§ π = 1 ) β ( β― β { π β β β£ π β₯ π } ) = ( β― β β
) ) |
149 |
|
hash0 |
β’ ( β― β β
) = 0 |
150 |
148 149
|
eqtrdi |
β’ ( ( π β β β§ π = 1 ) β ( β― β { π β β β£ π β₯ π } ) = 0 ) |
151 |
150
|
oveq2d |
β’ ( ( π β β β§ π = 1 ) β ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = ( 0 β 0 ) ) |
152 |
|
0exp0e1 |
β’ ( 0 β 0 ) = 1 |
153 |
151 152
|
eqtrdi |
β’ ( ( π β β β§ π = 1 ) β ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = 1 ) |
154 |
|
df-ne |
β’ ( π β 1 β Β¬ π = 1 ) |
155 |
|
eluz2b3 |
β’ ( π β ( β€β₯ β 2 ) β ( π β β β§ π β 1 ) ) |
156 |
155
|
biimpri |
β’ ( ( π β β β§ π β 1 ) β π β ( β€β₯ β 2 ) ) |
157 |
154 156
|
sylan2br |
β’ ( ( π β β β§ Β¬ π = 1 ) β π β ( β€β₯ β 2 ) ) |
158 |
|
exprmfct |
β’ ( π β ( β€β₯ β 2 ) β β π β β π β₯ π ) |
159 |
157 158
|
syl |
β’ ( ( π β β β§ Β¬ π = 1 ) β β π β β π β₯ π ) |
160 |
|
rabn0 |
β’ ( { π β β β£ π β₯ π } β β
β β π β β π β₯ π ) |
161 |
159 160
|
sylibr |
β’ ( ( π β β β§ Β¬ π = 1 ) β { π β β β£ π β₯ π } β β
) |
162 |
56
|
adantr |
β’ ( ( π β β β§ Β¬ π = 1 ) β { π β β β£ π β₯ π } β Fin ) |
163 |
|
hashnncl |
β’ ( { π β β β£ π β₯ π } β Fin β ( ( β― β { π β β β£ π β₯ π } ) β β β { π β β β£ π β₯ π } β β
) ) |
164 |
162 163
|
syl |
β’ ( ( π β β β§ Β¬ π = 1 ) β ( ( β― β { π β β β£ π β₯ π } ) β β β { π β β β£ π β₯ π } β β
) ) |
165 |
161 164
|
mpbird |
β’ ( ( π β β β§ Β¬ π = 1 ) β ( β― β { π β β β£ π β₯ π } ) β β ) |
166 |
165
|
0expd |
β’ ( ( π β β β§ Β¬ π = 1 ) β ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = 0 ) |
167 |
138 139 153 166
|
ifbothda |
β’ ( π β β β ( 0 β ( β― β { π β β β£ π β₯ π } ) ) = if ( π = 1 , 1 , 0 ) ) |
168 |
132 137 167
|
3eqtr2d |
β’ ( π β β β Ξ£ π§ β ( 0 ... ( β― β { π β β β£ π β₯ π } ) ) Ξ£ π₯ β { π β π« { π β β β£ π β₯ π } β£ ( β― β π ) = π§ } ( - 1 β ( β― β π₯ ) ) = if ( π = 1 , 1 , 0 ) ) |
169 |
86 117 168
|
3eqtr3d |
β’ ( π β β β Ξ£ π₯ β π« { π β β β£ π β₯ π } ( - 1 β ( β― β π₯ ) ) = if ( π = 1 , 1 , 0 ) ) |
170 |
64 169
|
eqtr3d |
β’ ( π β β β Ξ£ π β { π β β β£ ( ( ΞΌ β π ) β 0 β§ π β₯ π ) } ( - 1 β ( β― β { π β β β£ π β₯ π } ) ) = if ( π = 1 , 1 , 0 ) ) |
171 |
10 36 170
|
3eqtr3d |
β’ ( π β β β Ξ£ π β { π β β β£ π β₯ π } ( ΞΌ β π ) = if ( π = 1 , 1 , 0 ) ) |